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Data Analytics and Optimization

Smart industry

Taking the cyber-physical systems realized by the Internet of Things as carrier, sensors are used to
collect on-site perceived data through the network. According to the obtained data, data analytics
technology is used to accurately understand, measure, diagnose and forecast the production,
logistics and energy flow processes. On this basis, optimal decisions are made on production
planning, scheduling, operation and control to realize the intelligent ability of factories.
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Data Analytics and Optimization

Systems optimization is not only the key fundamental theory of complex decision-making,
but also the core of industrial intelligence, as well as the heart and engine of data analytics.

Decision-making Data analytics

% Many decision-making problems can be || % Many machine learning problems can be

formulated as the following optimization formulated as the following optimization
problem: problem:
max clx min f(x)
subjectto AX<Db Subj)éct ‘0 gx) <0
x>0 h(x) =0
X €Z" X E

K. P. Bennett and E. Parrado-Hernandez. The interplay of optimization and machine learning research, Journal of Machine Learning Research,

2006, 7: 1265-1281. 4



Data Analytics and Optimization — DAO based System Modeling

% Perceptual cognition is the basis of rational cognition; and rational cognition is the sublimation of
perceptual cognition, which are unified in practice.
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Data Analytics and Optimization — DAO based System Modeling

Data Analytics and Optimization (DAO)
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Brain-inspired Intelligence

L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.

(Best Paper Award for 2014~2023)



Data Analytics and Optimization — DAO based System Modeling

*» Mathematical modeling is used to formulate the identifiable and quantifiable parts of the
production, logistics and energy optimization problems. Meanwhile, data analytics supplements
the mathematical model for constructing the parts that are hardly to model and forming the
parameters of the model.

DAO based System Modeling
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L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.
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Data Analytics and Optimization — DAO based System Modeling

Production: Set-packing Modeling Logistics: Space-time Network Flow Modeling

Engineering perspective
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L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787.

D. Sun, L. Tang, R. Baldacci, Z. Chen. A decomposition method for the group-based quay crane scheduling problem. INFORMS Journal on Computing, 2024, 36(2): 305-704.



Data Analytics and Optimization — DAO based System Modeling

Energy: Continuous-time Modeling Information: Generalized Disjunctive Programming
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Q. Guo, L. Tang, 1. Liu, S. Zhao. Continuous-time formulation ... in aluminium industry. International Journal of Production Research, 2021, 59(10): 3169-3184.

I.E. Grossmann, F. Trespalacios. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AICAE, 2013, 59(9): 3276 - 3295



Data Analytics and Optimization — DAO based Solution

Central Brain: think and memory

Peripheral brain: memory Peripheral brain: memory

Sensory
information

Sensory

Control . ]
information

Control

A 4 L 4

Arm with suckers Arm with suckers

L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.
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Data Analytics and Optimization — DAO based Solution
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Data Analytics and Optimization — DAO based Solution

DAO based optimization

Integer optimization
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Data Analytics and Optimization — DAO based Solution

Integer optimization Intelligent optimization
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L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787.
L. Tang, T. Li, Y. Meng, J. Liu. Searching in symmetric solution space ... TEEE Transactions on Pattern Analysis and Machine Intelligence, 2025. (IF: 18.6)

L. Tang, Z. Li and J. Hao. Solving the single row facility layout ... permutation group. TEEE Transactions on Evolutionary Computation, 2023, 27(2): 251-265. (IF: 12)
X. Wang, Y. Zhao, L. Tang and X. Yao. MOEA/D with spatial-temporal ... multiobjective optimization. TEEE Transactions on Evolutionary Computation, 2025, 29(3): 764-778.




Data Analytics and Optimization — DAO based Solution
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Data Analytics and Optimization — DAO based Solution

Reinforcement learning
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Statistical physics based learning

“ Based on the theory of statistical physics, the correlation is established between the
movement of a large number of microscopic particles and the characteristics of
macroscopic behaviors, corresponding microscopic particles to data, and macroscopic
behaviors to knowledge, and an explainable learning model with parameters with
physical meaning is constructed.

Microscopic Statistical distribution Macroscopic

Information theory based learning

« Several important concepts related to information theory are always presented in
machine learning: information entropy, information gain, information gain ratio, etc.

“ The applications of information theory in machine learning are mainly in the construction
of loss functions, the construction of models, and the research of deep learning
interpretability.

Coding Theory Entropic-Enthalpy Learning

B 1 %

Entropy, Enthalpy, and Free
. Energy

3 o 3

Signal Processing Cognitive Learning

Signal Processing

Y. Meng, F. Shi, L. Tang. Improvement of reinforcement learning ... IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 5298-5309.

X. Wang, Y. Wang, L. Tang and Q. Zhang. Multi-objective ensemble learning with... IEEE Transactions on Evolutionary Computation, 2024, 28(4): 1099-1113. (IF: 12)

X. Wang, J. Zhang, L. Tang, Y. Liu. Evolutionary direction learning with multivariate Gaussian probabilistic model for multiobjective optimization. JEEE Transactions on Evolutionary Computation, 2025.
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1. DAO-based PDDE System Technology (H)

New Machine New Engineering
C: Brain-inspired intelligence C: Biology-inspired intelligence
" PDDE/System technology MCIS/Physical noumenon
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1. DAO-based PDDE System Technology (H)

Perception (P)
> The origin of cognition, sensory systems (such as
vision, hearing, touch, and taste) convert external
stimuli into neural signals via receptors
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Execution (E)

> Motor cortex transforms decisions into action
commands, basal ganglia regulate initiation, force and
coordination, with feedback via thalamus
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Discovery (D)
> Signals are transmitted to association cortex (e.g.,
prefrontal and parietal), combined with memory and
experience for integration and cognitive modeling

Decision (D)
> Decision-making involves cooperation of multiple

neural systems, with synaptic connections in cortical
circuits supporting learning and task decision
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1. DAO-based PDDE System Technology (H)

Full-dimension Organic System Intelligence
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1. DAO-based PDDE System Technology (H)
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2. Data Analytics and Optimization for Material Science (V)
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2. Data Analytics and Optimization for Material Science (V)

% China has been the largest steel producer in the world for the last twenty consecutive years.

% In 2024, China's steel output has reached about 1.005 billion tons, accounting for about 53.3% of
the world's steel output.

% Steel industry has been one of the pillar industries in China’s national economy.

World steel production China’'s industrial output ratio

Steel 11.7%

Data Analytics and Optimization for Manufacture-Circulation Industrial System



2. Data Analytics and Optimization for Material Science (V) — Large Language Model

Material Discovery

< Model Overview: The GNoME model developed by
the Google DeepMind team has achieved remarkable
results in materials science.

< Crystalline Structure Discovery: Based on the large
language model, it has found the number of
crystalline structures over 45 times than history.

< Stability Prediction Efficiency: The discovery rate of
material stability prediction has increased by 30%

Material Synthesis

< Platform Overview: A-Lab is an autonomous platform
designed to bridge the gap between computational
material screening and experimental realization.

< Experimental Capability: A-Lab is able to decide for
itself how to synthesize the target material,
conducting 355 experiments in 17 days.

< Synthesis Efficiency: It successfully synthesized 41 of
58 compounds, which remarkably enhanced the
synthesis efficiency.
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Merchant, A., Batzner, S., Schoenholz, S.S. et al. Scaling Deep Learning for Materials Discovery. Nature, 2023, 624: 80-85.

Szymanski, N.J., Rendy, B., Fei, Y. et al. An autonomous laboratory for the accelerated synthesis of novel materials Nature, 2023, 624: 86-91.




2. Data Analytics and Optimization for Material Science (V) — steel Material

Material Design Process Design

% Metallurgical equipment: Topology-optimized steel | | % Process design: Precise process control enables
design enhances metallurgical equipment superior material performance and functionality.
performance and durability. % Analytics model: The material analytics model

% Logistics equipment: Topology-driven lightweight serves as the basis for process optimization. It is
steel enhances logistics equipment performance. built using mechanism and data-driven model.

< Energy equipment: Steel material based on data- | | ¢+ Dynamic optimization: Model parameters are
driven and mechanical model ensures energy optimized by a dynamic multi-objective evolutionary

equipment safety. algorithm.
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Metallurgical organization Mechanical properties




2. Data Analytics and Optimization for Material Science (V) — steel Material

Steel Material Design and Optimization Software System
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2. Data Analytics and Optimization for Material Science (V)
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2. Data Analytics and Optimization for Material Science (V) — Information Material

Material Design

Sensing, storage, communication and computing:
new semiconductor materials realize high-precision
control and optimization of industrial process.

New acousto-optic materials, energy and
environmental materials: design new materials to

optimize energy conversion efficiency.

New machines: development of smart and bionic
materials for new robot body structures and smart
chips for new robot brains.

Atom Manufacturing

% In situ sensing: a multimodal in situ observation
platform achieves the interfacial atomic coordination
evolution and defect nucleation mechanisms.

% Precise control; atomic manufacturing requires the
ultimate delicate manipulation technology to
achieve the precise manipulation of atoms.

% Operation optimization: optimizing the atomic
deposition path improves the precision of atomic
fabrication manipulation by combining with DAO .

InteIIient Assembly
engineerin
Assembly moving parts g g
control ~ devices

primitives




2. Data Analytics and Optimization for Material Science (V) — Information Material

Information Material Design and Optimization Software System
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2. Data Analytics and Optimization for Carbon Science (V)

Chemistry Graph

% Molecular Graph: providing a framework for
predicting the macroscopic properties of complex
carbon systems from their atomic connectivity.

» Carbon Genetic: the connection relationship
between atoms determines the properties and
behavior of carbon molecules.

% Performance Prediction: understanding structure-
property relationship for carbon-based substances
like CO2, CH4, and chemicals.
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Stereochemical Topology

3D Chemistry Topology: The chemical properties of
carbon-based substances arise from the combined
effect of its structure and topology, especially the
topology of graphs embedded in three-dimensional
space.

Synthesis Optimization: facilitating the synthesis of
carbon chemicals, the preparation of carbon
materials, and the design of carbon capture and
conversion materials.

Global attention given to local structure

Recursive representation of local structure
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3. RDMS-based Quality Analytics and Dynamic Optimization (S)

RDMS : Raw Material - Device - Machine - Systems
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3. RDMS-based Quality Analytics and Dynamic Optimization (S) — PDDE
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3. RDMS-based Quality Analytics and Dynamic Optimization (S)

Features: continuous and discrete production, huge devices, high-temperature operations, massive
consumption of energy and resource
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Data Analytics and Optimization for Manufacture-Circulation Industrial System



3. RDMS-based Quality Analytics and Dynamic Optimization (S) — Quality Perception

Fusion of Multi-dimensional Intelligent Technologies
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3. RDMS-based Quality Analytics and Dynamic Optimization (S) — Quality Discovery

Case 1: Iron Quality Prediction Case 2: Steel-making Dynamic Prediction

Multi-objective Evolutionary Ensemble Learning Challenges Dynamic analytics method

Fusion of thermodynamic ¢ ® Continuous prediction Multi-stage modeling strategy

model (meso) and process Sub-learner based on fusion : ;
P of meso and macro data requiremen
data (macro)

® Unstable performance of

®
® Dynamic model with feedback
® Hybrid kernel function

®

- single model
s i . . Evolving the structure and
Multi- ive evolution . . i i i i
ult Objzf;o :tf\ n(: utionary ¢ parameters of ensemble e Dynamic adjustment Differential evolution algorithm
model requirement
u = Oxygen
Process data and Macroscopic l Blow:’:;f:: iron and steel scrap Auxiliary materiareasuremem
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Fume hood —»
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learning molten steel— 2 Reractory

from spout lining
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ThermOdynamiC the surface
model Mesoscopic

Molten steel

Blowing at bottom

X. Wang, T. Hu, and L. Tang. A multiobjective evolutionary nonlinear ensemble learning .... TEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5): 2080-2093.

C. Liy, L. Tang, J. Liu, Z. Tang. A dynamic analytics method based on multistage modeling for a BOF steelmaking process. JEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1097-1109.
X. Wang, Y. Wang, L. Tang, Q. Zhang. Multiobjective ensemble learning with multiscale data for product quality prediction in iron and steel industry. IEEE Transactions on Evolutionary Computation, 2024, 28(4): 1099-1113.




3. RDMS-based Quality Analytics and Dynamic Optimization (S) — Quality Discovery

Case 3: Temp. Prediction of Reheat Furnace

Analytics method

Features of heating process

® [S-SVMis used to
compensate for the prediction
deviation of the slab
temperature

® Significantly improve the
model prediction accuracy

® Dynamic and nonlinear

® Difficult to obtain mechanism
model

® Obvious prediction error with
mechanism model

Case 4: Strip Quality Analytics

Multi-objective Ensemble Learning

Sub-learner in the ensemble

Least square support vector ¢
learning

machine (LSSVM)

Evolving the ensemble

Multi-objective evolutionary ¢
learning model

algorithm

Deviation Compensation

LS-SVM )
Model :> Mechanism Model
) 1y g
[ Mixed Model ]
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X. Wang, Y. Wang, L. Tang, Q. Zhang. Multiobjective ensemble learning with multiscale data for product quality prediction in iron and steel industry, JEEE Transactions on Evolutionary Computation, 2024, 28(4): 1099-1113.

X. Wang, Y. Wang, L. Tang. Strip hardness prediction in continuous annealing using multiobjective sparse nonlinear ensemble learning ...

IEEFE Transactions on Automation Science and Engineering, 2022, 19(3): 2397-2411.




3. RDMS-based Quality Analytics and Dynamic Optimization (S) — Product Quality Design

Material Production Key Components Equipment Manufacturing Industrial Systems
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3. RDMS-based Quality Analytics and Dynamic Optimization (S)—Process Design and Optimization

% Steel production is a highly complex and multi-stage process, and the interaction and quality transfer between
the various links directly affect the quality of the final product. Therefore, the quality control of each process
cannot be carried out in isolation, but should be coordinated in the whole process, which can effectively identify
and eliminate accumulated quality deviations and ensure that the final product meets the design requirements.

Multi-stage quality analytics and optimization for whole process of steel production

Data analytics for quality variations

Carbon content Carbon content Dimensional accuracy,
Impurity elements (sulfur, Impurity elements surface quality,
Raw phosphorus, silicon, manganese) Alloying element mechanical properties,
material . . . . internal structure, . Product
Ironmaking quality PR Steglmaklng l . HoF rolling Col_d rolling ., quality
model quality model w! | quality model quality model in use
T Temperati"i"i‘é, cﬁgfgévi’étio, air T Oxygen flow rate, oxygen gun T Rolling temperature, pressure, ‘
volume, coke ratio... mode, auxiliary materials... cooling speed...
Process optimization for quality variations
Component deviation Operating deviation Process deviation Performance deviation
[l e L
|
: -
— - — — _EEEEE-T=— -
Y i A
Ironmaking L e Steelmaking-continuous casting Hot rolling Cold rolling

C. Liu, L. Tang, K. Zhang and X. Xu. Multiobjective evolutionary learning for multitask quality prediction problems in continuous annealing process. TEEE Transactions on Neural

Networks and Learning Systems, 2024.



3. RDMS-based Quality Analytics and Dynamic Optimization (S) — PDDE
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3. RDMS-based Quality Analytics and Dynamic Optimization (S) — Product Quality Design

<+ Topology optimization: optimization design method for equipment manufacturing
products, integrating structural mechanics and optimization methods. Through optimizing
spatial distribution of materials, structural configuration and component size, it can obtain
the optimal structural form from multiple structural design schemes to achieve weight

reduction, cost reduction and performance improvement for aviation, automotive and other
products.

< Quality design: topology optimization for design important structural parts in equipment,
such as machine base, beam of forging machine, tooling structures for aircraft etc.




3. RDMS-based Quality Analytics and Dynamic Optimization (S)—Process Design and Optimization

Process Optimization in Manufacturing

Multi-objective process optimization

Multi-objective optimization for
product quality

Improve product performance,
life, reliability, maintainability,
and safety

Operation parameters for
process optimization

Adjust machining speed,
pressure, angle, depth, and
shears

54
Deposition sequence /

Layer diameter
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In-process Quality Improvement (IPQI)

IPQI-enhanced automation

Engineering-driven data
fusion for quality ¢
improvement

Advanced statistical and
machine learning methods
and optimization methods

IPQI methodologies for
assembly, machining, and ¢
forming

Integrate causation-based
models and optimization
algorithms

.

Engineering specifications

Disturbance

Control
Controller

u

¢£

Machine

Product

Machine signal feedback

Quality signal feedback

Quality sensing

J. J. Shi. In-process quality improvement: Concepts, methodologies, and applications. IISE Transactions, 2023, 55(1): 2-21.

Z.P.Yu, Z. X. Pan, D. H. Ding, et. al. Strut formation control and processing time optimization for wire arc additive manufacturing of lattice structures. Journal of Manufacturing Processes, 2022, 79: 962-974.




3. RDMS-based Quality Analytics and Dynamic Optimization (S)— Quality Discovery

< Fusion modeling for multistage manufacturing process

Product Design

-Critical features
-Tolerance design

Process Design

-Quality representation -Relationship between workpiece and tool
-Machine layout
-Process sequences

Datum Error
Fixture Error
Machine Error
Overall Error
Observation

Linear mechanism model Nonlinear data model

X, —> A Xy x, —> 2, (X))

x, > B, _u, x, —> g,(u,)

x, =A _x, ,+B,_u, +w, X, =g, &, )t+g,(u,)+w,
Y, =Cx, +V, Y. =8&:(xX,)+ Vv,

J Shi. Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes. CRC Press, 2006.

J V Abellan-Nebot, J Liu, F R Subirdn, J. Shi. State space modeling of variation propagation in multistation machining processes considering machining-induced variations. ASME. J. Manuf. Sci. Eng., 2012, 134(2): 021002.
A Wang, J Shi, J. Holistic modeling and analysis of multistage manufacturing processes with sparse effective inputs and mixed profile outputs. IISE Transactions, 2020, 53(5): 582-596.




3. RDMS-based Quality Analytics and Dynamic Optimization (S) — Quality Perception

Quality Perception

% In view of complex conditions and key links in the equipment % Types of fault perception in equipment manufacturing process:
manufacturing process, industrial intelligent chips and embedded
systems are developed, special micro-nano sensors/intelligent
photoelectric sensors with high sensitivity are developed, and 2. Structural faults, e.g., cracks, wear, corrosion, imbalance

sensors are interconnected with equipment through the Internet 3. Parametric faults, e.g., fluid vortex, resonance, overheating,
of Things, so as to achieve highly reliable deep intelligent

1. Wear fault, i.e., the equipment wear degree

perception of key process parameters that are difficult to measure improper fit tightness
in the equipment manufacturing process. 4. Failure of poor operation and maintenance
Embedded Industrial
New materials Smart sensing system interconnection

)
£
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Equipment manufacturing process TLWMN six-hole microstructure fiber New photoelectric sensor Equipment manufacturing IoT




3. RDMS-based Quality Analytics and Dynamic Optimization (S)

) 4
Decision-making: Through topology and multi-objective optimization, T !
. 9 gh topology ) P ' Topology optimization 4— Data-driven model ||
optimize the topology structure and performance of structural [ S s S | S ———— I
components of equipment to realize weight and cost reduction, and objective, constraints quality result
performance enhancement of aircraft, automotive and other products. ==l

Process parameter setting optimization

| |
I min  J()=e(x(,), pty)+ j’ FQx(),u(t), z(1), p,t)dt :
Execution: Based on the quality discovery models, the dynamic !_ ______ I L I
operation optimization of the production process is carried out with

evolutionary algorithms to dynamically get the best parameter settings

to achieve the expected product quality requirements of equipment.

Model Predictive :
Control i
|
|

|
I | Dynamic optimization ——»
|
|

min (Y7 (t + 1) — Yr(t + 1))°
Discovery: Through multi-source data fusion for manufacturing

process, it provides common models for product quality prediction, and

monitoring; together with multi-objective evolutionary learning methods, I

it achieves consistency and stability of product quality. : Mechanism — Data-driven model: prediction,
I

process data feedback

model +— monitoring, diagnosis

Perception: Through the development of high sensitivity special
intelligent sensors and taking use of the Internet of Things, it realizes
the intelligent and reliable measurement of the key process parameters
in the equipment manufacturing process.

|
Il Intelligent sensors I
: Internet of Things




3. RDMS-based Quality Analytics and Dynamic Optimization (S)

Wave-Particle Duality Quantum Holographic Quality Management (S)

Reverse Design (Wave)

Equipment design

= Steel
A

Forward Operation (Particle)

Equipment
B, manufacturing

Equipment service

G: Fe Ring (F Ring )
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3. RDMS-based Quality Analytics and Dynamic Optimization (S) — carbon Reduction

Process Design Optimization (D)

<+ Optimize the ingredient sourcing to achieve low/zero-
carbon manufacturing. Optimal design the production
process and develop advanced technologies for energy
conservation and carbon reduction.

Real-time Process Optimization (E)

< Develop carbon emissions models considering key process
parameters. Propose dynamic multi-objective optimization
of operating parameters considering dynamic changes in
energy consumption and carbon emissions.

___________________
- Carbon Em
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I o ] [ F—
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|- Qually Image 1_, Carbon Emissions
1

Discovery of Carbon Emission Patterns (D)

<+ The mechanism and data fusion method is proposed to
analyze multi-source data patterns, identify carbon
emission hotspots and anomalies, enabling full-process,
multi-dimensional emission discovery.

Input Proposed algorithms Output () Causality of carbon emissions among different regions
rad - Spatiotemporal causal discovery / “arbon emis
Matrix decomposition Difusion model aus —
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Perception of Carbon Footprint (P)

< System perception technology uses structured data, text,
voice, images, and sensors for accurate, real-time, stable
acquisition and monitoring of carbon emission data across
various sources and processes.




3. RDMS-based Quality Analytics and Dynamic Optimization (S) — carbon Reduction

The value chain is shifting from low-end to high-end
— )

Carbon Reduction Carbon Capture Carbon Conversion
Ingredient Optimization|| Process Optimization Chemisorption Physisorption Information Material Energy Conversion
Efficiency Enhancement || Hydrogen Metallurgy Membrane Separation Electrochemistry Carbon Mineralization Biological Utilization

Process-driven upstream integration

E
<

Demand-pulled precision guidance



3. RDMS-based Quality Analytics and Dynamic Optimization (S) — carbon Reduction

Carbon Reduction

< Extreme energy efficiency: energy
and energy
utilization efficiency.

saving improving

< Resource recycling: expanding the
scale of waste
reduce resource consumption.

recycling and

< Carbon substitution: accelerating
the using of low-carbon energy,
such as, hydrogen metallurgy.

Minimize CO,
Emissions

Carbon Capture

< Physical adsorption: using MOFs,
activated carbon, molecular sieve
materials to capture CO,.

< Chemical  absorption: using
materials such as ammonia and
calcium oxide to absorb CO..

<+ Membrane separation: using
selective polymer membranes, to
separate CO,

Carbon Conversion

< Energy conversion: Photocatalytic
and electrocatalytic technologies
enable the conversion of CO2z into
energy carriers such as syngas,
methanol, and jet fuel.

< Carbon material preparation:
converting CO2z into key materials
like diamond semiconductors for
electronics manufacturing.

.....................................................................................................
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DAO-based PDDE System Technology (H) )

Data Analytics and Optimization for Material Science (VD

RDMS-based Quality Analytics and Dynamic Optimization (S))

Full-dimension Organic Management System (E) )

DAO & LLM based Design and Simulation for MCIS (M) )




4. Full-dimension Organic Management System (E)

Manufacture-Circulation Industrial System (ECO-System, abbreviated as E)

Manufacture-

Circulation Industrial System

Al
ogistics
(Caia'™ MCIS

Analytics)

E (ECO-System) = Production + Logistics + Energy + Information



4. Full-dimension Organic Management System (E)

High
Resource
Consumption

High
CO, Emission

Steel
Production

Energy
Consumption

Production Logistics



4. Full-dimension Organic Management System (E)

> New Characteristics

® Complex physical and chemical processes with multiphase production
® Large variety and low volume products, as well as large equipment

® Complicated logistics structure, as well as break down type production structure

Complicated Large Variety and Huge Chemical Complicated
Production Process Low Volume Equipment Logistics Structure

g@h :

Rolhng Process Coil




4. Full-dimension Organic Management System (E)

Steel Production

' :>°:>‘1:

rolling

ironmaking steelmaking __continuous casting slab yard

OOOOQ

(| —— [

00080

hot rolling mill

n<

: i o*
AP )

picklig-rolling

-

— continuous annealing coil yard

coil yard

I
J

electro-galvanizati

WL

thermo-galvanization

coil yard

Unit

&

Warehouse

Production: Iron-making/Steelmaking/Hot Rolling/Cold Rolling




4. Full-dimension Organic Management System (E)

Production Scheduling

Charge Batching Cast Batching

I ek
[

fCast! <« — Tundish

bl =)
‘6’ charge k. S —

Ceoeece

Order 2 Charge Steelmaking Continuous casting

Convertor CF-1
Convertor CF-2
Refining RF-1
Refining RF-2

Caster CC-1
Caster CC-2

Cast 3

L. Tang, G. Wang, J. Liu, J. Liu. A combination of Lagrangian ... steelmaking and continuous-casting production. Naval Research Logistics, 2011, 58(4): 370-388.

L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787.



4. Full-dimension Organic Management System (E) — Production Optimization

»

Open-order Part

I /
I /

Open-order Slabs

*

Customer-order Part —— —/ ——
High variety , 2
Low volume Charge Customer-order Slabs

Chargel Charge4 Charge7

-..._A“... Chargez oo Charge3 ..—4‘.4 ChargeS e Charge6 | “... Cha;ge8 oo Chargeg .....................
............. xm_iLm_Amwmwm ) N ; o

-y v \' }
Waiting 57U waiting U waiting TR
time k k time time

e

e

<4

Group all the slabs of
different customer orders
into batches

p-median clustering
with capacity and additional
technical constraints

® Minimize assignment cost
® Minimize open-order slabs
® Minimize unfulfilled cost of order

® Lagrangian relaxation
® Column generation

L. Tang, G. Wang, J. Liu, J. Liu. A combination of Lagrangian relaxation and column generation for order batching in steelmaking and

continuous-casting production. Naval Research Logistics, 2011, 58(4): 370-388.



4. Full-dimension Organic Management System (E) — Production Optimization

%, TE%, Ladle Decisions

lcast! < Tundish  Batch and sequence charges to form casts for
T the given tundishes
f !_  Select a casting width for each charge in a cast

TV

Ceeecce

Steelmaking Continuous casting Objectives

« Maximize tundish utilization

« Minimize total grade switch and width switch cost

C= Charge

Width CAST 1 CAST 2 CAST 3 Constraints

« Grade switch constraint
« Width switch constraint
>

« Lifespan of tundish

serial-batch 1 serial-batch 2 serial-batch 3 Time

L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787. =g



4. Full-dimension Organic Management System (E) — Production Optimization

Characteristics of Semi-continuous < A new kind of batch scheduling
Batching Scheduling _ _
% We analyze the semi-continuous batch
S cttes] Befiifie __The New Semi scheduling problem, and present the
) . continuous Batching i i
Machine Scheduling Machine Scheduling optimal algorithm.

y
nter and leave th Preheating zone | Heating zone | Soaking zone
Handle achine one by o
several jobs | Y. el A ¥
““\'simultaneously
spective start ti
Input Output

Respective
completion time Measure

Traditional batching machines are mainly divided into three types: The heating process of tube-billets in
(1) burn-in (2) fixed batch (3) serial batching heating furnace

L. Tang, Y. Zhao. Scheduling a single semi-continuous batching machine. Omega, 2008, 36(6):992-1004.



4. Full-dimension Organic Management System (E) — Production Optimization

Sequence of adjacent jobs
to be processed

Objective

Minimize the total
changeover costs

Slab Slab width

Warm up material section

|A
<

N+M N+M

Minimize Z Cin ;
=1 j=l
N+M

Subject to Z X, =1,

i=1

jed{l, 2,

oy NFM )

Staple material section

.

> X, =1, ie{l,2,..,NtM}
j=1
> > X, <IS|-1, Sc{l,..,N*M}, 2<|S| < N+M -2 Structure and components of a turn
ieS jeS\{i}
A
The The
W|dth -------- ﬁrst |ast --------
slab slab
Y
The first turn Turns within a shift

L. Tang, J. Liu, A. Rong, Z. Yang. A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel

Complex. European Journal of Operational Research, 2000, 124(2): 267-282.




4. Full-dimension Organic Management System (E) — Production Optimization

— g o

Open-order Slabs

A2

Open-order Part

e > ’ Customer
Customer-order Part *\T/-: |:> /ﬂ 5 ’ Orders

High variety Customer-order Slabs
Low volume Charge

Allocate the
/- / / |:> Open-order Slabs to

/ / , / Unfulfilled Orders

Open-order Slabs Order 1 Order 2 Problem 1

Data Analytics and Optimization for Manufacture-Circulation Industrial System



4. Full-dimension Organic Management System (E) — Production Optimization

Maximize the Minimize the Equipment Matching
Reward Mismatching Cost Constraints Constraints
=1 =1 ——]
i m i m i -
y — N — , -
) 5 5 — —
S
oo 3" 3 = e
Form batches for each Select a median coil for each
empty furnace batch

L. Tang, Y. Meng, Z. Chen, J. Liu. Coil batching to improve productivity and energy utilization in steel production. Manufacturing &

Service Operations Management, 2016, 18(2): 262-279.



4. Full-dimension Organic Management System (E)

Logistics in Steel Plant

rolling

fe=:|-= |mpeamsenmns EE
1:>

ironmaking steelmaking _ continuous castiné}\ slab ygy hot rolling mill coil y ﬂ
m E-] Eiﬁﬁﬁﬁﬁﬂ ! $.ﬂ ﬂ ﬂ
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M N 8 :8 continuous annealing coil yard electro- galvanlzatlon
picklig-rolling j\/\[\/\ﬂ ﬂ ﬂ —
) 7
@@@@@
thermo-galvanization coil yard
Unit @ Warehouse

Logistics: Loading/Transportation/Shuffling/Storage/Stowage



4. Full-dimension Organic Management System (E)

Logistics Scheduling

T T — Crane scheduling problem

Determines the transportation sequence for all demanded

coils and shuffled position for each blocking coil.

Loading/ Tank1 Tank2 Tank3 Tank4 Tank5 Tank6 Tank7 TankS8 DeC|S|0n
Unloading

Retrieval sequence of the
: target coils and shuffled
«ordge positions for blocking coils

Objective

Minimize the time by
which the retrieval of all
target coils is completed

Track :
Track m
Rowinm o Row2 B Rrow3 Row 4 For general case
rim T L s e X
~ \ | v
X N

L — y —_
Heuristic algorithm &
worst-case analysis

For special cases

Polynomial algorithms
(optimal solutions)

L. Tang, X. Xie, J. Liu. Crane scheduling in a warehouse storing steel coils. ZISE Transactions, 2014, 46(3): 267-282.



4. Full-dimension Organic Management System (E) — Logistics Optimization

Stack
height

]
e Slabs to be
] shuffled
]

) Taret <lab
arget sla

Bottom of the
stack (slab 1)

The structure of a slab stack

[ 1 Shuffling coil of coil 1
[ 1 Shuffling coil of coil2 [ ] Non-demanded

EE Demanded

Shuffling problem in steel plants

Assign a storage slot for each shuffled item during
retrieving all target items in the given sequence

Decision

Suitable storage positions
for shuffled items

Objective

Minimize shuffling and
crane traveling

For general case

Greedy heuristics

For special cases

Polynomial algorithms
(optimal solutions)

L. Tang, R. Zhao, J. Liu. Models and algorithms for shuffling problems in steel plants. Naval Research Logistics, 2012, 59(7): 502-524.



4. Full-dimension Organic Management System (E) — Logistics Optimization

*o

“ For statistic and dynamic reshuffling The layout of a block

a column
Pt i
i

e
L4 -
P P

problem, an improved mathematical -

-
-

formulation and a simulation model

- <o, blocking
Lo2%e 2,27 objects
e’ Retrieving

object

are established.

Theight
5. | -y
width~~_ 1 __-féngth

% Five polynomial time heuristics and

their extended versions are proposed

and analyzed theoretically.

% The proposed heuristics outperforms

existing methods.

L. Tang, W. Jiang, J. Liu, Y. Dong. Research into container reshuffling and stacking problems in container terminal yards. IISE

Transactions, 2015, 47(7): 751-766. (II1SE Transactions Best Applications Paper Award)



4. Full-dimension Organic Management System (E) — Logistics Optimization

Minimize the moment
imbalance

Minimize the shuffling

Minimize the dispersion of
coils for the same destination

fore

stern

row

left

Structural constraints

column

[ Shuffling coil of coil 1 Demanded

[ 1 Shuffling coil of coil2 [ ] Non-demanded

Weight restriction
constraints

Operational constraints

L. Tang, J. Liu, et al. Modeling and solution for the ship stowage planning Modeling and solution for the ship stowage planning problem of

coils in the steel industry. Naval Research Logistics, 2015, 62(7): 564-581.




4. Full-dimension Organic Management System (E)

Energy Analytics
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4. Full-dimension Organic Management System (E)

Decision-
D making

DM Discovery

P (Perception

Energy Optimization

Low carbon energy planning

s

Oxygen

[Nitrogen _
Natural gas

Low carbon energy scheduling
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4. Full-dimension Organic Management System (E)

Multi-Energy Planning

+ Research Background <+ Reinforcement Learning Based Improved
In steel enterprises, by-product gases, steam, and Lagrangian Relaxa.tlon Algorithm |
electricity constitute a coupled system and the supply A reinforcement learning based method for step size
and demand balance of all energy carriers is update is proposed to dynamically adjust the
maintained within the allocation period. multipliers Lagrangian relaxation algorithm.

J — : * algorithm iteration
.!(.)F -rmEI _>: —> — — —> E_
SEhTEEE T K Rewads |

i % ﬁ Action P State

BFG Holder COG Holder LDG Holder Gurobi Solution Time(s) Gap(%) s LR LR-RL
Bra Item Ti 0.9 1
coo 1 ime(s) LR RL-LR LR RLIR 05
Energy Users Steam-Electricity System 1 3.6 6.3 3.5 0.8 0.9 0.7 1
Coal ’ ) ’ ' ' = 06
S e 0.5
T [ Boiler Turbine 30 1485 47.7 272 13 o 2,
Z 0.
. . - Main Grid 4 420.0 66.3 48.0 12 -
=10
¥ T — 5 859.1 127.0 71.9 1.7 0.9 02 g - 1%
- L2 Users L3 Users ‘ s % 6 28418 207.2 193.7 15 11 0.1 1 \
T L 7 >3600 430.7 380.8 1.7 1.3 0 y
> ‘ - | . 3 : ° 123456789101112131415161718192021222324252627282930
|_ccprP  L—— ’) 8 >3600 529.8 409.6 1.6 1.2 Number of iterations
Electricity Users . . . . .
The algorithm solves the time comparison Algorithm dual gap comparison

Miao Chang, Shengnan Zhao, Lixin Tang, Jiyin Liu, Yanyan Zhang. A reinforcement learning based Lagrangian relaxation algorithm for multi-energy allocation problem in steel enterprise.
Computers & Chemical Engineering, 2025, 194:108948.

Miao Chang, Lixin Tang, Shengnan Zhao. A Reinforcement Learning-based Lagrangian Decomposition Approach for Energy-Oriented Scheduling Optimization in Steelmaking Process. JEEE
Transactions on Automation Science and Engineering, 2025.




4. Full-dimension Organic Management System (E)

Gas scheduling Steam scheduling

Comprehensive allocation of gas system D S weS g ene(uon®) | Constraint Steam scheduling by coordinating demand and Objectives
! ' ' Pl 1 . . Py .
« Determine: allocation plan of BFG, COG, LDG L ws@pLi=l2.0 :E:> definition electricity generation ° Max'm'zf f'ift:f'%gg‘erit'i”‘”fo" dim‘?"g
e e e e e e e e 1 i f=1 i 1
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e e ! = l | T3 |
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Oxygen scheduling Electricity scheduling

P - . i System modeling
Task Minimize operating cost of oxygen system Thermal Generation Schedullng
Dynamically balance and optimize the , . , oy L] . Representation of emission penalty
oxygen system =Z 3 (e Furel durel Fovprie 078, igh gt gt b B TET B . E <0
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: Running state eneration Output level i
® Supplied by oxygen generator [0, -0, |= Bue  Gu=G_.,+¥, D, i, =a.. 9 9 brofits P l—5 | 1 4., l - ZZ/ by
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d O
ﬁ L'QE'E —_— = o Pipeline pressure, fluctuation limitations Lagrangian relaxation
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Y. Zhang, G. G. Yen, and L. Tang. Soft constraint handling for a real-world multiobjective energy distribution problem. International Journal of Production Research, 2020, 58(19): 6061-6077.

G. Che, Y. Zhang, L. Tang, S. Zhao. A deep reinforcement learning based multi-objective optimization ... oxygen production system in integrated iron and steel plants. Applied Energy, 2023, 345: 121332.
L. Tang, P. Che, J. Wang. Corrective Unit Commitment to an Unforeseen Unit Breakdown. IEEE Transactions on Power Systems, 2012, 27(4): 1729-1740.




4. Full-dimension Organic Management System (E)

Information Feedback
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4. Full-dimension Organic Management System (E)

Full-dimension Organic Management System

ECO-System : Physical Strength, Vitality, Momentum, Intelligence
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Logistics
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4. Full-dimension Organic Logistics Management System (E)

Game Theory Mechanism Design
% Game theory is the study of mathematical || < Mechanism design is an economic
models of strategic interactions among framework for understanding how business
rational decision-makers. Industrial can achieve optimal outcomes when
organization can be modeled as game individual self-interest and incomplete
problem. information may get in the way.
% Basic components include player, state, || < Mechanism design theory is built on the
action, payoff, strategy and equilibrium. concept of game theory.
Game Mechanism Design
e Non-co. Game <«— Cooperative Game K
| | =TT~
e Static Game <«— Dynamic Game =< Participant Design

Data Analytics and Optimization for Manufacture-Circulation Industrial System



4. Full-dimension Organic Logistics Management System (E)

Optimization based Game Modeling based on DAO Analytics based
Game Solution : Game Solution
s“\provmg aCCUracy

Integer optimization Rel::’:::?nn;ent
O o
T | E g
o 3 >
-+ - y
|| 3 I " H H H - :
N sl (Optimization) Evolutionary learning =
3 Q) optimization ( o m
-
N |2 = I
m 3 ' Al o (o n
]|
= 'f_Dr Convex and sparse (Data Statistical physics ?D n
=1 g‘ optimization Analytics) based learning = 7,
g 2 2
Topology and dynamic Information theory
optimization based learning

“hhancing efficien®

DAO based Octopus-topology Solution

L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.

(Best Paper Award for 2014~2023)



4. Full-dimension Organic Logistics Management System (E) — Production

>

Carbon-aware Production Scheduling Game

Carbon-aware Integrated Scheduling Game

/

% Game Modeling: the scheduling of cold rolling production| |+ Game Modeling: the carbon-aware integrated production
and electricity consumption is formulated as non- scheduling is formulated as cooperative game model. The
cooperative game model, which aims to make trade-off carbon footprint of whole process production is optimized
between production efficiency and carbon emission. by forming a grand coalition of all production stages.

o H . - 1 I 1 . . . . .

* Game Solution: A co-evolutionary algorithm is developed to | |, solution Methods: A row generation algorithm is developed
solve the low-carbon cold rolling scheduling game problem to solve the cooperative game model of integrated
efficiently. Moreover, the solution process is enhanced via production scheduling. The solving process is accelerated by
Deep CycleNet initialization. the reinforcement learning method.

Cold Rolling Agent1 Agent2 Dynanic environment — N YTy N w

T?{?‘Sfdﬁt E “ 4 ‘I‘. '_"‘.‘ Steelmaking _ =zt Hot rolling eSS Cold rolling
Job .|:| < Job Tnitial strategies(s."-..5”...5™) |  Decision set 57’ Decision set 5.7’ ol VR .""‘. scheduling E‘ | scheduling m%ﬁgﬁéjggg scheduling
sequencing sequencing l l ng:;:mg ) —_— S

A | TR M,ﬁmﬂ’aﬁﬁ M;‘ltt\m\hzjattlrsn f:/acl\':::t
Nash | Equilibrium * : ST Carbon quota for steelmaking| | Carbon quota for hot rolling | |Carbon quota for cold rolling

wismgms?. 50,57 | S, ke e

%55 carbony, %I o §$ =
quota setting quota setting S I—— . n‘
Nash Equilibrium strategies (S 5™ 1 I‘ \ / ““
Power Plant [ G I o A KT VET S Rt = HHHEE :>. n .

Data Analytics and Optimization for Manufacture-Circulation Industrial System




4. Full-dimension Organic Logistics Management System (E) — Logistics

4

)

o0

In-port Logistics Game for Carbon Reduction

Game modeling: In container ports, horizontal transport
between quays and yards consumes carbon emission. A
cooperative game allows trucks to share routes and
schedules, reducing empty trips and emissions.

Game solution: A low-carbon scheduling model minimizes
transport and emission costs under time-window
constraints. Carbon savings are fairly shared through data-
driven optimization for efficient coordination.

Port-wide Logistics Game for Carbon Reduction

4

L)

* Game modeling: Container ports are typical logistics
systems involving loading, transport, storage, and stacking.
A cooperative logistics network integrates operations for
low-carbon synergy.

% Game solution: A cooperative game model integrates
analytics and integer optimization to compute core
allocations of carbon and cost savings. The algorithm
improves efficiency for large-scale scheduling.

@29 | L4 o9

@ !
. @ @ | R
Ry "’m = e

................................................

_______________________________

Cooperative game mechanism for typical logistics operation

Container Handling In-port Container Transportation L) S_torage
and Retrieval

N y
T 7 IA\Y >
-‘ ------- ”5 —_—
B =T = e =] =
EoE EE
Vessel Quay Crane Container Truck Gantry Crane Container Yard

Cooperative game for integrated logistics for carbon reduction




4. Full-dimension Organic Logistics Management System (E) — Energy

L)

d

Oxygen station

Oxygen System Game for Carbon Reduction

Game Modeling: Coordinate multi-unit oxygen operations to
reduce system-wide electricity consumption and carbon
emissions, with cooperative game ensuring fair carbon cost-
sharing.

Game Solution: A hybrid row generation-OA algorithm
solves the model, quantifying each unit's marginal carbon
reduction contribution. Efficiency is enhanced Vvia
reinforcement learning and parallel cutting planes.

Oxygen station

Reduce carbon emissions

ity

Allocate the carbon
reduction costs Fairly

Steel enterprize Oxygeh station A

v
\
/

10

Oxygen station

Reduce power consumption

Cooperative Operation

R/
0’0

o0

Integrated Energy Game for Carbon Reduction

Game Modeling: For integrated energy systems, establish
non-cooperative game model and design collaborative

energy subsystem strategies to balance low-carbon
objectives with self-sufficiency.
Solution Method: A RL guided conditional variational

autoencoder based dynamic multi-objective optimization is
established to online solve the model, yielding dynamic
game equilibria among multi subjects in each period.

Smart management and optimization (decision, execution)

Comprehensive

Gas system Steam system

Oxygen system

Energy measurment, diagnosis and prediction (discovery) |

I Logistics data I I Energy data | I Equipment data |
Process
data ] T I | :
analytics Q -} Optimal
g - | = - G - AAAA - N
optimizati =y, ﬁ —; -— - - DIy =, - and MPC
on Sintering, coking ironmal king steelmaking casting heating Hot rolling Cold rolling
cyber-physical syterms (data perception)

Data Analytics and Optimization for Manufacture-Circulation Industrial System




4. Full-dimension Organic Carbon-Reduction System (E) — Information

\/
0’0

o0

Low-carbon Mechanism for Edge Computing Nodes

Game Modeling: Design energy-aware caching at edge
nodes to meet power and carbon-intensity constraints,
reducing latency, bandwidth, and transmission energy
through incentive-driven low-carbon operation.

Game Solution: A two-stage game-theoretic mechanism
coordinates edge—center topology via matching games and
optimizes caching through Stackelberg games over backhaul
links for low-carbon collaboration.

Data center

{

lot 2
Cache assignment based on carbon
reduction intensity

lot 1

o0

o0

Low-carbon Mechanism for Computing Centers

Game Modeling: Determine the workload allocation across
data centers, considering hardware heterogeneity, dynamic
electricity pricing, inter-center data transfer costs, and
carbon footprint reduction.

Game Solution: A Stackelberg game model coordinates
workload allocation, where each task type minimizes carbon
emissions, and deep reinforcement learning derives
strategies toward Nash equilibrium.

/" data

ARy ... ARy { center ‘ g0t @
> WEE on,,. oy, vt g
| | e Data center |
data
cloud Y Workloads
CARy, CARy,... CARy workioad |ARyz... ARy, icenter? .
S| e e ey fuo B
ger
[© (CWM) [ Data center 2
. data
I ARyjpy... ARy icenter [D] @
« o
! 2 %E’ﬁww ERyyoy
Al workloads 1 ; Data center 3

geo-distributed data centers .
Workload assignment based on carbon

reduction intensity

Workload assignment
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5. DAO & LLM based Design and Simulation for MCIS (M)

Enterprise Industry System

A tree A forest An eco-system

An enterprise Homogeneous enterprise Heterogeneous enterprise



5. DAO & LLM based Design and Simulation for MCIS (M)

i Healthcare ~
MCIS ~ CRing Low Carbon MCIS

MCIS ~ IRing

Quantum Intelligence ~
Information MCIS

MCIS ~ F Ring

Steel ~ Machinery
Equipment MCIS

MCIS ~ SRing MCIS ~f Ring

Semiconductor ~ S Nonferrous ~ Aviation
Electronics MCIS Equipment MCIS

f
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5. DAO & LLM based Design and Simulation for MCIS (M)

MCIS from Steel Industry to Equipment Manufacturing ( F Ring)

Logistics transformation

Equipment operation and maintenance
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Energy transformation
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5. DAO & LLM based Design and Simulation for MCIS (M)

Assortment Planning

> Based on market demand and production

capacity, decisions are made regarding the
varieties and specifications to be produced,
production efficiency is enhanced while
meeting diverse demands.

Dynamic Planning

» Taking into account the dynamic changes
in supply-demand, by continuously monitoring
fluctuations in demand, inventory status, and
dynamically adjusting production & inventory
strategies, the overall can be enhanced.

Static Planning

> Based on the customer orders and inventory

structure, determine the production volume,
inventory, balance production, inventory costs
and service levels, and set initial values for the
production & inventory systems.

Inventory Control

Based on inventory status, an inventory control
model is constructed, and control strategies are
designed to ensure that the inventory level
remains within a reasonable range, thereby
guaranteeing the stability of the system.




5. DAO & LLM based Design and Simulation for MCIS (M)

Enterprise-wide carbon quota allocation

< Allocate the enterprise-wide carbon quota to the production, logistics, and energy systems
based on their emission reduction potentials, to achieve balanced emission responsibility and
coordinated low-carbon operation across the plant.

Total carbon quota for whole enterprise

|
v v v

Production system Logistics system Energy system

O O : . Blas furuace :-ﬂm',-"‘m__i ";’" ""'
/K; ddddd o
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&L Synthesizing information
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5. DAO & LLM based Design and Simulation for MCIS (M)

MCIS Carbon Reduction through Cooperation

% For the MCIS, diverse technologies and customized low-
carbon steel demands often lead to redundant production
and higher emission. A collaborative circular framework
enables joint production and low-carbon manufacturing.

% A cooperative game-based profit allocation mechanism
ensures fair sharing, while a data-driven core allocation
method optimization algorithm enhance efficiency.

Collaborative Circular Framework

Steel enterprises

/N

Joint Design
@---- Joint Optimization

NN
A/R m Joint Production

Manufacturing enterpris_e;_s ___________________ $
A AAL AT A A A Al
| Fa 1 1 i 1 & + L A LI
L - - L o : ! m PROFIT

% The production and sales process of equipment
manufacturers (EM) can be modeled as an assortment
optimization model.

L)

% EMs can cooperate to share the assortment they can
produce. Policies can encourage cooperation among EMs
to avoid duplication of development and promote a wider
range of low-carbon products.

EM 1 EM 2 EM 3

c(S) > c(EMi)
VieN

Coalition S exhibits 0 low carbon products
Coalition S’ exhibits all low carbon products

Coalition S Coalition S’

‘ ExhibitiEn | r=——- Ehibi on ~-=
|
o Je (B i I

Xihua Liu, Shengnan Zhao, Lixin Tang. Carbon Emission Reduction in Manufacture-Circulation Industrial System: An Assortment Optimization Embedded Cooperative Game Theory Method. 2025

INFORMS Annual Meeting, Atlanta.




5. DAO & LLM based Design and Simulation for MCIS (M)

Carbon Reduction Game

% The carbon emission problem of fossil fuel
supply chain is established as a cooperative
game model, and the nucleolar mechanism
is proposed to assign the carbon emission
responsibility of fossil fuel supply chain.

Nucleolus Allocation

[z =a(Ty) - 2(Ty),
if zj = a(Tij) - Z(Tij)

Zi = zj, iij < a(Tij) - Z(Tij)

! zZ(N) = c(N).

A

1

Carbon Reduction Mechanism Design

% The carbon emission reduction in the supply
chain can be realized through the
information collection of all pollution
sources in the supply chain by enterprises,
and total carbon tax can be redistributed
among enterprises in the supply chain.

' |

1. Enterprise emission
reduction

Each firm (¢ in

supply chain makes : _ :
efforts to reduce W Allocation  {¢;}ien 4
eMiSSIONs f; O the = fociriei g

processes j where
i € N;.

2. Responsibility allocation

Total emissions ey f;

Shapley allocation

Carbon penalty p°¢;

Gopalakrishnan S, Granot D, Granot F. Consistent allocation of emission responsibility in fossil fuel supply chains. Management Science, 2021, 67(12): 7637-7668.

Gopalakrishnan S, Granot D, Granot F, et al. Incentives and emission responsibility allocation in supply chains. Management Science, 2021, 67(7): 4172-4190.




5. DAO & LLM based Design and Simulation for MCIS (M)

Mechanism Design and Optimization for Entire Life Cycle Carbon Reduction

All-dimensional organic management

Production

PP PrPePrPr e Te T
System optimization Quota allocation

YIuAs

Logistics
High quality and low carbon technology
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5. DAO & LLM based Design and Simulation for MCIS (M)

Comprehensive Organic System Intelligence

in Bod
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Steel ~ Machinery

Quantum Intelligence ~
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5. DAO & LLM based Design and Simulation for MCIS (M)

% Carbon cycle: Carbon elements store, migrate, exchange, and transform between human body and
the natural environment, being essential carriers for material and energy flows

» Carbon cycle in human body: Humans ingest carbohydrates, which are converted into glucose molecules absorbed by
cells. Metabolism enables the carbon cycle within the body, providing the material and energy basis for life activities.

» Carbon cycle in environment: Humans produce CO2 through respiration, which plants convert into carbohydrates via
photosynthesis. These carbohydrates then transfer to humans through the food chain, providing energy and materials.

» Carbon cycle in industries: Industrial CO2 can be converted through plant photosynthesis and photocatalytic reactions,
transforming CO2 into renewable hydrocarbon fuels, providing energy for industry.

Breathe Photosynthesis/Photocatalytic Emission

KT oS
o Water, light
- i ? 2

— energy

Food —Fruit@( D\
|

------ Carbon emitted

Carbon in body (C) Carbon in plant (C) from industry(C)
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