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Smart industry
Taking the cyber-physical systems realized by the Internet of Things as carrier, sensors are used to

collect on-site perceived data through the network. According to the obtained data, data analytics

technology is used to accurately understand, measure, diagnose and forecast the production,

logistics and energy flow processes. On this basis, optimal decisions are made on production

planning, scheduling, operation and control to realize the intelligent ability of factories.
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Systems optimization is not only the key fundamental theory of complex decision-making,

but also the core of industrial intelligence, as well as the heart and engine of data analytics.

Decision-making

❖ Many decision-making problems can be

formulated as the following optimization

problem:

Data analytics

❖ Many machine learning problems can be

formulated as the following optimization

problem:

max

subject to subject to

min
x

K. P. Bennett and E. Parrado-Hernández. The interplay of optimization and machine learning research, Journal of Machine Learning Research, 
2006, 7: 1265-1281.

𝐜T𝐱

𝐴𝐱 ≤ 𝑏

𝐱 ≥ 𝟎

𝐱 ∈ ℤ𝑛

𝑓 𝑥

𝑔 𝑥 ≤ 0

ℎ 𝑥 = 0

𝑥 ∈ 𝛺
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❖ Perceptual cognition is the basis of rational cognition; and rational cognition is the sublimation of

perceptual cognition, which are unified in practice.
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L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.
(Best Paper Award for 2014~2023)

Data Analytics and Optimization — DAO based System Modeling

Brain-inspired Intelligence



❖ Mathematical modeling is used to formulate the identifiable and quantifiable parts of the

production, logistics and energy optimization problems. Meanwhile, data analytics supplements

the mathematical model for constructing the parts that are hardly to model and forming the

parameters of the model.
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L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.
(Best Paper Award for 2014~2023)
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Production: Set-packing Modeling
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L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787.

D. Sun, L. Tang, R. Baldacci, Z. Chen. A decomposition method for the group-based quay crane scheduling problem. INFORMS Journal on Computing, 2024, 36(2): 305-704.

Logistics: Space-time Network Flow Modeling
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Energy: Continuous-time Modeling

Q. Guo, L. Tang, J. Liu, S. Zhao. Continuous-time formulation … in aluminium industry. International Journal of Production Research, 2021, 59(10): 3169-3184.

I.E. Grossmann, F. Trespalacios. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE, 2013, 59(9): 3276 - 3295
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Information: Generalized Disjunctive Programming

𝑔 𝑥 ≤ 0

ሧ

𝑖 ∈ 𝐷𝑘

𝑌𝑖𝑘
𝑟𝑖𝑘 𝑥 ≤ 0
𝑐𝑘 = 𝛾𝑖𝑘

Ω 𝑌 = 𝑇𝑟𝑢𝑒

𝑥𝑙𝑜 ≤ 𝑥 ≤ 𝑥𝑢𝑝

𝑥 ∈ ℝ𝑛, 𝑐𝑘 ∈ ℝ1,

𝑌𝑖𝑘 ∈ 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒

min 𝑧 = 𝑓 𝑥 + ෍

𝑘 ∈𝐾

𝑐𝑘
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L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.
(Best Paper Award for 2014~2023)

Data Analytics and Optimization — DAO based Solution
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L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.
(Best Paper Award for 2014~2023)
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L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.
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L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787.
L. Tang, T. Li, Y. Meng, J. Liu. Searching in symmetric solution space ... IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025. (IF: 18.6)

L. Tang, Z. Li and J. Hao. Solving the single row facility layout … permutation group. IEEE Transactions on Evolutionary Computation, 2023, 27(2): 251-265. ( IF: 12 )
X. Wang, Y. Zhao, L. Tang and X. Yao. MOEA/D with spatial-temporal … multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2025, 29(3): 764-778. 
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Branch & Price

Intelligent optimization

❖A Branch & Price approach is proposed based on
set packing model.

❖Discover the trapezoidal feature of the cost
structure and construct a new low-dimensional
dynamic programming algorithm, which
overcomes the high-dimensional feature of the
conventional dynamic programming algorithm.

❖Propose a multi-layer branching strategy with
sub-problem structure.

❖For the first time, it realizes the optimal solving
of the same kind of problem.
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A general convex optimization problem is

min 𝑓0 𝑥
𝑠. 𝑡. 𝑓i 𝑥 ≤ 0, 𝑖 = 1,2,… ,𝑚

ℎ𝑖 𝑥 = 0, 𝑖 = 1,2,… , 𝑝
where 𝑓0, 𝑓1, … , 𝑓m ∶ Rn → R are convex functions and ℎ1, ℎ2, … , ℎ𝑝 ∶ R

n → R are affine.
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L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.
(Best Paper Award for 2014~2023)
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Reinforcement learning Evolutionary learning
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Statistical physics based learning Information theory based learning

❖Based on the theory of statistical physics, the correlation is established between the

movement of a large number of microscopic particles and the characteristics of

macroscopic behaviors, corresponding microscopic particles to data, and macroscopic

behaviors to knowledge, and an explainable learning model with parameters with

physical meaning is constructed.

MacroscopicMicroscopic Statistical distribution

❖Several important concepts related to information theory are always presented in

machine learning: information entropy, information gain, information gain ratio, etc.

❖The applications of information theory in machine learning are mainly in the construction

of loss functions, the construction of models, and the research of deep learning

interpretability.

Y. Meng, F. Shi, L. Tang. Improvement of reinforcement learning ... IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 5298-5309.
X. Wang, Y. Wang, L. Tang and Q. Zhang. Multi-objective ensemble learning with... IEEE Transactions on Evolutionary Computation, 2024, 28(4): 1099–1113. (IF: 12)

X. Wang, J. Zhang, L. Tang, Y. Liu. Evolutionary direction learning with multivariate Gaussian probabilistic model for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2025.
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Execution (E)

Perception (P) Discovery (D)

Decision (D)

➢ The origin of cognition, sensory systems (such as

vision, hearing, touch, and taste) convert external

stimuli into neural signals via receptors

➢ Signals are transmitted to association cortex (e.g.,

prefrontal and parietal), combined with memory and

experience for integration and cognitive modeling

➢ Decision-making involves cooperation of multiple

neural systems, with synaptic connections in cortical

circuits supporting learning and task decision

➢ Motor cortex transforms decisions into action

commands, basal ganglia regulate initiation, force and

coordination, with feedback via thalamus

P
D

D
E

1. DAO-based PDDE System Technology (H)
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IOT sensing
Perception

Discovery

Collecting + Measuring + Understanding

Industry image Speech Visualization

诊 断 + 预 测

Plant-wide Production and Inventory Planning 

Production/Logistics Batching and Scheduling

Decision-

making

Execution Process Optimization + Optimal Control

Optimization

Analytics

Knowledge  + Diagnosis + Prediction

Production process Product quality

Steel Equipment Logistics Energy

Acousto-optic calculation Embedded chip Physical network Industrial interconnection

1. DAO-based PDDE System Technology (H)
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Traditional industry forces basic research Basic research leads emerging industries
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2. Data Analytics and Optimization for Material Science (V)



Steel 11.7%

China's industrial output ratio

❖ China has been the largest steel producer in the world for the last twenty consecutive years.

❖ In 2024, China's steel output has reached about 1.005 billion tons, accounting for about 53.3% of

the world's steel output.

❖ Steel industry has been one of the pillar industries in China’s national economy.

World steel production

China
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2. Data Analytics and Optimization for Material Science (V)
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Material Synthesis
❖ Platform Overview: A-Lab is an autonomous platform

designed to bridge the gap between computational

material screening and experimental realization.

❖ Experimental Capability: A-Lab is able to decide for

itself how to synthesize the target material,

conducting 355 experiments in 17 days.

❖ Synthesis Efficiency: It successfully synthesized 41 of

58 compounds, which remarkably enhanced the

synthesis efficiency.

Merchant, A., Batzner, S., Schoenholz, S.S. et al. Scaling Deep Learning for Materials Discovery. Nature, 2023, 624: 80–85.
Szymanski, N.J., Rendy, B., Fei, Y. et al. An autonomous laboratory for the accelerated synthesis of novel materials Nature, 2023, 624: 86–91.

Material Discovery
❖ Model Overview: The GNoME model developed by

the Google DeepMind team has achieved remarkable

results in materials science.

❖ Crystalline Structure Discovery: Based on the large

language model, it has found the number of

crystalline structures over 45 times than history.

❖ Stability Prediction Efficiency：The discovery rate of

material stability prediction has increased by 30%

compared to previous studies.

2. Data Analytics and Optimization for Material Science (V) — Large Language Model



Material Design
❖ Metallurgical equipment: Topology-optimized steel

design enhances metallurgical equipment

performance and durability.

❖ Logistics equipment: Topology-driven lightweight

steel enhances logistics equipment performance.

❖ Energy equipment: Steel material based on data-

driven and mechanical model ensures energy

equipment safety.

26

Process Design
❖ Process design: Precise process control enables

superior material performance and functionality.

❖ Analytics model: The material analytics model

serves as the basis for process optimization. It is

built using mechanism and data-driven model.

❖ Dynamic optimization: Model parameters are

optimized by a dynamic multi-objective evolutionary

algorithm.

Fully Connected Network
Steelmaking process

Metallurgical organization Mechanical properties

2. Data Analytics and Optimization for Material Science (V) — Steel Material
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2. Data Analytics and Optimization for Material Science (V) — Steel Material



2. Data Analytics and Optimization for Material Science (V) 
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Material Design

❖ Sensing, storage, communication and computing:

new semiconductor materials realize high-precision

control and optimization of industrial process.

❖ New acousto-optic materials, energy and

environmental materials：design new materials to

optimize energy conversion efficiency.

❖ New machines：development of smart and bionic

materials for new robot body structures and smart

chips for new robot brains.

29

Atom Manufacturing

❖ In situ sensing: a multimodal in situ observation

platform achieves the interfacial atomic coordination

evolution and defect nucleation mechanisms.

❖ Precise control: atomic manufacturing requires the

ultimate delicate manipulation technology to

achieve the precise manipulation of atoms.

❖ Operation optimization: optimizing the atomic

deposition path improves the precision of atomic

fabrication manipulation by combining with DAO .

Atomic 
primitives

In situ
control

Assembly
devices

Intelligent 
moving parts

Assembly 
engineering

2. Data Analytics and Optimization for Material Science (V)  — Information Material



Data Analytics and Optimization for Smart Industry
30

2. Data Analytics and Optimization for Material Science (V)  — Information Material



2. Data Analytics and Optimization for Carbon Science (V)

Chemistry Graph
❖ Molecular Graph: providing a framework for

predicting the macroscopic properties of complex

carbon systems from their atomic connectivity.

❖ Carbon Genetic: the connection relationship

between atoms determines the properties and

behavior of carbon molecules.

❖ Performance Prediction: understanding structure-

property relationship for carbon-based substances

like CO₂, CH₄, and chemicals.

31

Stereochemical Topology
❖ 3D Chemistry Topology: The chemical properties of

carbon-based substances arise from the combined

effect of its structure and topology, especially the

topology of graphs embedded in three-dimensional

space.

❖ Synthesis Optimization: facilitating the synthesis of

carbon chemicals, the preparation of carbon

materials, and the design of carbon capture and

conversion materials.
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3. RDMS-based Quality Analytics and Dynamic Optimization (S) 
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3. RDMS-based Quality Analytics and Dynamic Optimization (S) — PDDE
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Iron-making Steelmaking Continuous Casting Slab Yard

Hot Rolling 

Cold Rolling Coil Yard Coil YardShipping

Features: continuous and discrete production, huge devices, high-temperature operations, massive 
consumption of energy and resource
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Fusion of Multi-dimensional Intelligent Technologies

Image understanding Voice understanding Text understanding Internet of Things sensor

Industrial
intelligence

Industrial 
process

Data Analytics
(AI)

Optimization
(OR)
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X. Wang, T. Hu, and L. Tang. A multiobjective evolutionary nonlinear ensemble learning …. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5): 2080-2093.
C. Liu, L. Tang, J. Liu, Z. Tang. A dynamic analytics method based on multistage modeling for a BOF steelmaking process. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1097-1109.

X. Wang, Y. Wang, L. Tang, Q. Zhang. Multiobjective ensemble learning with multiscale data for product quality prediction in iron and steel industry. IEEE Transactions on Evolutionary Computation, 2024, 28(4): 1099-1113.

Process data and 
image

Thermodynamic 
model

Multi-objective 
evolutionary 

learning

Macroscopic

Mesoscopic

Iron 
quality

Case 1: Iron Quality Prediction

Multi-objective Evolutionary Ensemble Learning

Fusion of thermodynamic 
model (meso) and process 

data (macro) 

Sub-learner based on fusion 
of meso and macro data

Multi-objective evolutionary 
algorithm

Evolving the structure and 
parameters of ensemble 

model

Case 2: Steel-making Dynamic Prediction

 Pour out

molten steel

from spout

Impurities are

oxidized on

the surface

Oxygen

Waste gas

Water-cooled

oxygen lance

Refractory

lining

Molten steel

Fume hood

Blowing at bottom 

Stage 1 Stage LStage 2

Stage 1 Stage L

                           First stage Second stage Third stage Reblow

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

Tapping

Whole blowing process

Molten iron and steel scrap

Blow oxygen Measurement

 Auxiliary materials

Dynamic analytics method

⚫ Multi-stage modeling strategy

⚫ Dynamic model with feedback

⚫ Hybrid kernel function 

⚫ Differential evolution algorithm 

⚫ Continuous prediction 
requirement

⚫ Unstable performance of 
single model

⚫ Dynamic adjustment 
requirement

Challenges 
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Case 3: Temp. Prediction of Reheat Furnace

Analytics method

⚫ LS-SVM is used to 
compensate for the prediction 
deviation of the slab 
temperature

⚫ Significantly improve the 
model prediction accuracy

⚫ Dynamic and nonlinear

⚫ Difficult to obtain mechanism 
model 

⚫ Obvious prediction error with 
mechanism model

Features of heating process  

Mechanism Model
LS-SVM
Model

Deviation Compensation

Mixed Model

Case 4: Strip Quality Analytics

Multi-objective Ensemble Learning

Least square support vector 
machine (LSSVM)

Sub-learner in the ensemble 
learning

Multi-objective evolutionary 
algorithm

Evolving the ensemble 
learning model

X. Wang, Y. Wang, L. Tang, Q. Zhang. Multiobjective ensemble learning with multiscale data for product quality prediction in iron and steel industry, IEEE Transactions on Evolutionary Computation, 2024, 28(4): 1099-1113.
X. Wang, Y. Wang, L. Tang. Strip hardness prediction in continuous annealing using multiobjective sparse nonlinear ensemble learning …. IEEE Transactions on Automation Science and Engineering, 2022, 19(3): 2397-2411.
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Equipment ManufacturingMaterial Production Industrial Systems

Machining / AssemblyDesign / Synthesis Service / Maintenance

Steel 
Materials

Metallurgical 

Equipment

Logistics
Equipment

Energy 
Equipment

Information 
Equipment

(Machine) (Systems)(Raw Material) (Device)

Key Components

冶金装备

物流装备

能源装备

信息装备

Forging / Processing
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❖ Steel production is a highly complex and multi-stage process, and the interaction and quality transfer between

the various links directly affect the quality of the final product. Therefore, the quality control of each process

cannot be carried out in isolation, but should be coordinated in the whole process, which can effectively identify

and eliminate accumulated quality deviations and ensure that the final product meets the design requirements.

Multi-stage quality analytics and optimization for whole process of steel production

Component deviation Operating deviation Performance deviationProcess deviation

Ironmaking Steelmaking-continuous casting Hot rolling Cold rolling

Ironmaking quality 
model

Steelmaking 
quality model

Hot rolling 
quality model

Cold rolling 
quality model

Raw 
material Product 

quality 
in use

Data analytics for quality variations

Process optimization for quality variations

Carbon content
Impurity elements 
Alloying element

Dimensional accuracy, 
surface quality, 

mechanical properties, 
internal structure, 

Carbon content
Impurity elements (sulfur, 

phosphorus, silicon, manganese)

Temperature, charge ratio, air 
volume, coke ratio…

Oxygen flow rate, oxygen gun 
mode, auxiliary materials…

Rolling temperature, pressure, 
cooling speed…

xn,1

xn,M-1

xn,M

+1

xn,2

+1

Feature 1

Input layer Output layerHidden layer

+1

Feature 2

+1 +1

Feature 3 Feature L

ynSBR

C. Liu, L. Tang, K. Zhang and X. Xu. Multiobjective evolutionary learning for multitask quality prediction problems in continuous annealing process. IEEE Transactions on Neural 
Networks and Learning Systems, 2024.
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Perception

Discovery

Decision-
making

Execution

Product Quality Design

Process Design and Optimization

Quality Discovery

Quality Perception

Quality Management

3. RDMS-based Quality Analytics and Dynamic Optimization (S) — PDDE

Steel 
Industry

Image 
understanding

Voice 
understanding

Text 
understanding

Internet of Things 
sensors

Process data 
and image

Thermodynamic
model

Macros-
copic

Mesos-
copic

Multi-objective Evolutionary Ensemble Learning for Quality

Quality of 
Melton Iron

Equipment 
Manufacturing

New photoelectric
sensor

Equipment 
manufacturing 

TLWMN six-hole 
microstructure fiber

Equipment 
manufacturing IoT



❖ Topology optimization: optimization design method for equipment manufacturing

products, integrating structural mechanics and optimization methods. Through optimizing

spatial distribution of materials, structural configuration and component size, it can obtain

the optimal structural form from multiple structural design schemes to achieve weight

reduction, cost reduction and performance improvement for aviation, automotive and other

products.

❖ Quality design: topology optimization for design important structural parts in equipment,

such as machine base, beam of forging machine, tooling structures for aircraft etc. 
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Process Optimization in Manufacturing

Multi-objective process optimization

Multi-objective optimization for 
product quality

Improve product performance, 
life, reliability, maintainability, 

and safety

Operation parameters for 
process optimization

Adjust machining speed, 
pressure, angle, depth, and 

shears

J. J. Shi. In-process quality improvement: Concepts, methodologies, and applications. IISE Transactions, 2023, 55(1): 2-21.
Z. P. Yu, Z. X. Pan, D. H. Ding, et. al. Strut formation control and processing time optimization for wire arc  additive manufacturing of lattice structures. Journal of Manufacturing Processes, 2022, 79: 962-974. 

In-process Quality Improvement (IPQI)

IPQI-enhanced automation

Engineering-driven data 
fusion for quality 

improvement

Advanced statistical and 
machine learning methods 
and optimization methods

IPQI methodologies for 
assembly, machining, and 

forming

Integrate causation-based 
models and optimization 

algorithms

Engineering specifications Disturbance

∑ Machine Product
Input

r
Controller∑

Machine signal feedback

Quality sensingQuality signal feedback

Error Control Output

quality

e u y

q

↋
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❖ Fusion modeling for multistage manufacturing process

Product Design
-Quality representation
-Critical features
-Tolerance design

Process Design
-Relationship between workpiece and tool
-Machine layout
-Process sequences

1k k kB −→x u

Datum Error

Fixture Error

Machine Error

Overall Error

Observation

1 1k k kA − −→x x

k k k kC= +y x v

1 1 1k k k k k kA B− − −= + +x x u w

Linear mechanism model Nonlinear data model

1 1 2( ) ( )k k k kg g−= + +x x u w

1 1( )k kg −→x x

2 ( )k kg→x u

3( )k k kg= +y x v

3. RDMS-based Quality Analytics and Dynamic Optimization (S)— Quality Discovery

J Shi. Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes. CRC Press, 2006.
J V Abellan-Nebot, J Liu, F R Subirón, J. Shi. State space modeling of variation propagation in multistation machining processes considering machining-induced variations. ASME. J. Manuf. Sci. Eng., 2012, 134(2): 021002. 

A Wang, J Shi, J. Holistic modeling and analysis of multistage manufacturing processes with sparse effective inputs and mixed profile outputs. IISE Transactions, 2020, 53(5): 582–596.



Quality Perception

New photoelectric sensorEquipment manufacturing process TLWMN six-hole microstructure fiber Equipment manufacturing IoT

Demand-driven
New materials Smart sensing

Embedded 
system

Industrial 
interconnection

网络连接

数据

应用

公有云 私有云

混合云
管理平台

应用层-云平台

感知层-边缘计算
节点

采集层-
终端

公网
（或专线）

可视化

工业网络

视觉检测仪
六自由度
机器人 双臂机器人 AGV小车工业传感器

工业智能
网关

边缘服务器

云服务器

平台管理

传感器
信息

控制
指令

控制
指令

视觉
信息

机器人
状态

控制
指令

机器人
状态

控制
指令

控制
指令

状态
信息

❖ In view of complex conditions and key links in the equipment

manufacturing process, industrial intelligent chips and embedded

systems are developed, special micro-nano sensors/intelligent

photoelectric sensors with high sensitivity are developed, and

sensors are interconnected with equipment through the Internet

of Things, so as to achieve highly reliable deep intelligent

perception of key process parameters that are difficult to measure

in the equipment manufacturing process.

❖ Types of fault perception in equipment manufacturing process:

1. Wear fault, i.e., the equipment wear degree

2. Structural faults, e.g., cracks, wear, corrosion, imbalance

3. Parametric faults, e.g., fluid vortex, resonance, overheating,

improper fit tightness

4. Failure of poor operation and maintenance
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D

E

D

P

Perception:  Through the development of high sensitivity special

intelligent sensors and taking use of the Internet of Things, it realizes

the intelligent and reliable measurement of the key process parameters

in the equipment manufacturing process.

Discovery: Through multi-source data fusion for manufacturing 

process, it provides common models for product quality prediction, and

monitoring; together with multi-objective evolutionary learning methods,

it achieves consistency and stability of product quality.

Execution:  Based  on the  quality  discovery  models,  the dynamic 

operation optimization of the production process is carried out with

evolutionary algorithms to dynamically get the best parameter settings 

to achieve the expected product quality requirements of equipment.

Decision-making: Through topology and multi-objective optimization,

optimize the topology structure  and performance of structural

components of equipment to realize weight and cost reduction, and

performance enhancement of aircraft, automotive and other products.

process data

Mechanism 
model

Data-driven model: prediction, 
monitoring, diagnosis

quality model

Dynamic optimization
Model Predictive 

Control
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c
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s
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quality resultobjective, constraints

Topology optimization Data-driven model

Intelligent sensors
Internet of Things
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Process parameter setting optimization
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F

C

: Fe Ring (F Ring )

: Carbon Ring (C Ring)

Wave-Particle Duality Quantum Holographic Quality Management (S)

Steel 
industry

Equipment 
manufacturing

Reverse Design (Wave)

Forward Operation (Particle)

Material supply

Material design

Equipment service 

Equipment design

FC
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Discovery of Carbon Emission Patterns (D)

❖The mechanism and data fusion method is proposed to
analyze multi-source data patterns, identify carbon
emission hotspots and anomalies, enabling full-process,
multi-dimensional emission discovery.

Real-time Process Optimization (E)

❖Develop carbon emissions models considering key process
parameters. Propose dynamic multi-objective optimization
of operating parameters considering dynamic changes in
energy consumption and carbon emissions.

Perception of Carbon Footprint (P)

Process Design Optimization (D)

❖System perception technology uses structured data, text,
voice, images, and sensors for accurate, real-time, stable
acquisition and monitoring of carbon emission data across
various sources and processes.

❖Optimize the ingredient sourcing to achieve low/zero-
carbon manufacturing. Optimal design the production
process and develop advanced technologies for energy
conservation and carbon reduction.
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The value chain is shifting from low-end to high-end

Process-driven upstream integration

Demand-pulled precision guidance

Chemisorption

Membrane Separation

Physisorption

Electrochemistry 

Carbon CaptureCarbon Reduction

Information Material

Carbon Mineralization

Energy Conversion

Biological Utilization

Carbon Conversion

Ingredient Optimization

Efficiency Enhancement

Process Optimization

Hydrogen Metallurgy
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Carbon Reduction Carbon Capture Carbon Conversion
❖ Extreme energy efficiency: energy

saving and improving energy

utilization efficiency.

❖ Resource recycling: expanding the

scale of waste recycling and

reduce resource consumption.

❖ Carbon substitution: accelerating

the using of low-carbon energy,

such as, hydrogen metallurgy.

❖ Energy conversion: Photocatalytic

and electrocatalytic technologies

enable the conversion of CO₂ into

energy carriers such as syngas,

methanol, and jet fuel.

❖ Carbon material preparation:

converting CO₂ into key materials

like diamond semiconductors for

electronics manufacturing.

❖ Physical adsorption: using MOFs,

activated carbon, molecular sieve

materials to capture CO2.

❖ Chemical absorption: using

materials such as ammonia and

calcium oxide to absorb CO2.

❖ Membrane separation: using

selective polymer membranes, to

separate CO2.

3. RDMS-based Quality Analytics and Dynamic Optimization (S) – Carbon Reduction



51

DAO-based PDDE System Technology (H)

Data Analytics and Optimization for Material Science (V)

RDMS-based Quality Analytics and Dynamic Optimization (S)

DAO & LLM based Design and Simulation for MCIS (M)

Full-dimension Organic Management System  (E)

Outline



Production

Logistics

Energy

S
y
n

th
e

s
iz

in
g

 

in
fo

rm
a
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n

Mass transfer

Momentum transfer

Energy transfer

Manufacture-
Circulation Industrial System

MCIS

E（ECO-System）= Production + Logistics + Energy + Information 

Manufacture-Circulation Industrial System（ECO-System, abbreviated as E）

AI
(Data 

Analytics)

OR
(Optimization)Synthesizing 

information
Production

Logistics

Energy
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High
Resource 

Consumption 

High 
CO2 Emission 

High
Energy  

Consumption 
High Inventory

Steel 
Production 

Logistics Energy DataProduction 53

Challenges Faced by Steel Industry

4. Full-dimension Organic Management System  (E)
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➢ Modeling and Algorithmic Challenges

⚫ Conflicting multiple objectives

⚫ Complex technology and management constraints

⚫ Large scale integer variables and strongly NP-hard 

⚫ Cannot directly apply or generalize existing algorithms

Modeling

Algorithmic

➢ New Characteristics

⚫ Complex physical and chemical processes with multiphase production

⚫ Large variety and low volume products, as well as large equipment

⚫ Complicated logistics structure, as well as break down type production structure

Data Analytics and Optimization for Smart Industry 54
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Complicated 
Logistics Structure 

Huge Chemical 
Equipment

Large Variety and 
Low Volume 

Complicated
Production Process

Rolling Process

Iron

Steel

Slab

Coil



continuous annealing  

thermo-galvanization

ironmaking steelmaking continuous  casting coil  yard

   coil yard 

hot rolling mill   slab yard

picklig-rolling

coil  yard electro-galvanization

 coil yard 

rolling 

Unit Warehouse

Production:  Iron-making/Steelmaking/Hot Rolling/Cold Rolling
55
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Tundish

Ladle

Steelmaking

Charge

Cast

Continuous casting

Order 1

ChargeOrder 2

Charge Batching Cast Batching 

Steelmaking Scheduling
Convertor CF-1
Convertor CF-2

Refining RF-1
Refining  RF-2

Caster  CC-1
Caster CC-2

Waiting time 

Cast 3

t

Cast 2Cast 1

L. Tang, G. Wang, J. Liu, J. Liu.  A combination of Lagrangian … steelmaking and continuous-casting production. Naval Research Logistics, 2011, 58(4): 370-388.

L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787.

Production Scheduling
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L. Tang, G. Wang, J. Liu, J. Liu.  A combination of Lagrangian relaxation and column generation for order batching in steelmaking and 
continuous-casting production. Naval Research Logistics, 2011, 58(4): 370-388.

CF-1
CF-2

RF-1

RF-2

CC-1

CC-2

Charge1

Charge2 Charge3

Cast 1

Waiting 
time

Charge4

Charge5 Charge6

Cast 2 Cast 3

Charge7

Waiting 
time

Charge9Charge8

Waiting 
time

t

Open-order Slabs

Customer-order Slabs

Open-order Part

Customer-order Part

Charge
High variety 
Low volume

⚫Minimize assignment cost

⚫Minimize open-order slabs

⚫Minimize unfulfilled cost of order

Group all the slabs of 

different customer orders 

into batches

p-median clustering 

with capacity and additional

technical constraints 

⚫Lagrangian relaxation 

⚫Column generation 

57
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Objectives

• Maximize tundish utilization

• Minimize total grade switch and width switch cost

Decisions

• Batch and sequence charges to form casts for 

the given tundishes 

• Select a casting width for each charge in a cast

Constraints

• Grade switch constraint  

• Width switch constraint

• Lifespan of tundish 

Tundish

Ladle

Steelmaking

Charge

Cast

Continuous casting

Width

Timeserial-batch 1 serial-batch 2 serial-batch 3

CAST 1 CAST 2 CAST 3

C
2

C
1

C
3

C
4

C
13

C
5

C

6

C
7

C
8

C
14

C
9

C
10

C
11

C
12

C
15

serial-batch 1 serial-batch 2 serial-batch 3

CAST 1 CAST 2 CAST 3

C= Charge

L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787. 58
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Traditional batching machines are mainly divided into three types: 
(1) burn-in  (2) fixed batch  (3) serial batching

❖ A new kind of batch scheduling

❖ We analyze the semi-continuous batch

scheduling problem, and present the

optimal algorithm.

The heating process of tube-billets in 
heating furnace

Characteristics of Semi-continuous
Batching Scheduling

Handle 
several jobs 

simultaneously

Begin and finish 
processing together

The same 
completion time

Classical Batching 
Machine Scheduling 

The New Semi
-continuous Batching 
Machine Scheduling

Enter and leave the 
machine one by one

The same batch 
begins processing 
at the same time

Respective start time

Respective 
completion time

L. Tang, Y. Zhao. Scheduling a single semi-continuous batching machine. Omega, 2008, 36(6):992-1004.

Preheating zone Heating zone Soaking zone

Measure Nozzle

Input Output

59
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i{1, 2, ..., N+M }

S  {1, ..., N+M },  2  |S|  N+M -2

Subject to

Minimize

Objective

Minimize the total 
changeover costs

Sequence of adjacent jobs 
to be processed

Decision

L. Tang, J. Liu, A. Rong, Z. Yang. A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel 
Complex. European Journal of Operational Research, 2000, 124(2): 267-282. 60
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Open-order Slabs

Customer-order Slabs

Open-order Part

Customer-order Part

Unfulfilled 
Orders

Charge

Customer 
Orders

High variety 
Low volume

Allocate the
Open-order Slabs to 
Unfulfilled Orders

Order 1 Order 2Open-order Slabs Problem 1
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Form batches for each 
empty furnace

Select a median coil for each 
batch

Maximize the 
Reward

Minimize the 
Mismatching Cost

Equipment 
Constraints

Matching 
Constraints 

62L. Tang, Y. Meng, Z. Chen, J. Liu. Coil batching to improve productivity and energy utilization in steel production. Manufacturing & 
Service Operations Management, 2016, 18(2): 262-279. 62
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continuous annealing  

thermo-galvanization

ironmaking steelmaking continuous  casting coil  yard

   coil yard 

hot rolling mill   slab yard

picklig-rolling

coil  yard electro-galvanization

 coil yard 

rolling 

Unit Warehouse

Logistics: Loading/Transportation/Shuffling/Storage/Stowage
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Track

Parts

Loading /
Unloading

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6 Tank 7 Tank 8

0m
1m 2m 3m

4m

5m
6m7m8m

Row 1

Track

Bridge

Track

Row 2 Row 3 Row 4

L. Tang, X. Xie, J. Liu. Crane scheduling in a warehouse storing steel coils. IISE Transactions, 2014, 46(3): 267-282.

Crane scheduling problem

Determines the transportation sequence for all demanded 
coils and shuffled position for each blocking coil.

Objective

Minimize the time by 
which the retrieval of all 
target coils is completed

Retrieval sequence of the 
target coils and shuffled 

positions for blocking coils 

Decision

For special cases

Polynomial algorithms 
(optimal solutions)

Heuristic algorithm &
worst-case analysis

For general case

64
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Stack
height

Slabs to be
shuffled

Target slab

Bottom of the 
stack (slab 1)

The structure of a slab stack

Shuffling coil of coil 1  Demanded 

Non-demandedShuffling coil of coil 2

Upper 

level 

Lower 

level
12

L. Tang, R. Zhao, J. Liu. Models and algorithms for shuffling problems in steel plants. Naval Research Logistics, 2012, 59(7): 502-524.

Shuffling problem in steel plants

Assign a storage slot for each shuffled item during
retrieving all target items in the given sequence 

Objective

Minimize shuffling and
crane traveling

Suitable storage positions 
for shuffled items 

Decision

For special cases

Polynomial algorithms 
(optimal solutions)

Greedy heuristics

For general case
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❖ For statistic and dynamic reshuffling

problem, an improved mathematical

formulation and a simulation model

are established.

❖ Five polynomial time heuristics and

their extended versions are proposed

and analyzed theoretically.

❖ The proposed heuristics outperforms

existing methods.

a position

a column
a bay

a tier

a lane

width

height

length

Retrieving
object

blocking  
objects

The layout of a block

Arrival 
container

Blocking 
container

Blocking 
container

Retrieving 
container

L. Tang, W. Jiang, J. Liu, Y. Dong. Research into container reshuffling and stacking problems in container terminal yards. IISE 
Transactions, 2015, 47(7): 751-766. (IISE Transactions Best Applications Paper Award)
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Shuffling coil of coil 1  Demanded 

Non-demandedShuffling coil of coil 2

Upper 

level 

Lower 

level
12

Minimize the moment 

imbalance
Minimize the shuffling

Minimize the dispersion of 

coils for the same destination

Operational constraints
Weight restriction 

constraints
Structural constraints

L. Tang, J. Liu, et al. Modeling and solution for the ship stowage planning Modeling and solution for the ship stowage planning problem of 
coils in the steel industry. Naval Research Logistics, 2015, 62(7): 564-581.
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Operations Analytics and Optimization for Smart Industry
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Energy Optimization

4. Full-dimension Organic Management System  (E)
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❖ Research Background

Multi-Energy Planning

❖ Reinforcement Learning Based Improved
Lagrangian Relaxation Algorithm

The algorithm solves the time comparison Algorithm dual gap comparison

Steam-Electricity System

TurbineBoiler

BFG consume COG consume LDG consume

Iron and Steel Making Plant

By-product gas holder

L1 Users L2 Users L3 Users

Electricity Users

Energy Users

Blast Furnace Coke Oven Basic Oxygen Furance

BFG Holder COG Holder LDG Holder

CCPP

Main Grid

BFG

COG

LDG

Coal

A reinforcement learning based method for step size
update is proposed to dynamically adjust the
multipliers Lagrangian relaxation algorithm.

Agent

Solving 
subproblem

Obtain the upper 
and lower bounds

Update 
multiplier

Stop 
criterion

Solution

Lagrange relaxation 
algorithm iteration

Action State

Reward 

In steel enterprises, by-product gases, steam, and
electricity constitute a coupled system and the supply
and demand balance of all energy carriers is
maintained within the allocation period.

Item
Gurobi 

Time(s)

Solution Time(s) Gap(%)

LR RL-LR LR RL-LR

1 3.6 6.3 3.5 0.8 0.9

2 41.6 20.1 13.2 1.4 0.0

3 148.5 47.7 27.2 1.3 1.0

4 420.0 66.3 48.0 1.2 1.0

5 859.1 127.0 77.9 1.7 0.9

6 2841.8 207.2 193.7 1.5 1.1

7 >3600 430.7 380.8 1.7 1.3

8 >3600 529.8 409.6 1.6 1.2

Miao Chang, Shengnan Zhao, Lixin Tang, Jiyin Liu, Yanyan Zhang. A reinforcement learning based Lagrangian relaxation algorithm for multi-energy allocation problem in steel enterprise. 
Computers & Chemical Engineering, 2025, 194:108948.

Miao Chang, Lixin Tang, Shengnan Zhao. A Reinforcement Learning-based Lagrangian Decomposition Approach for Energy-Oriented Scheduling Optimization in Steelmaking Process. IEEE 
Transactions on Automation Science and Engineering, 2025.
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Gas scheduling

4. Full-dimension Organic Management System  (E)

Steam scheduling

Oxygen scheduling Electricity scheduling

Y. Zhang, G. G. Yen, and L. Tang. Soft constraint handling for a real-world multiobjective energy distribution problem. International Journal of Production Research, 2020, 58(19): 6061-6077.

G. Che, Y. Zhang, L. Tang, S. Zhao. A deep reinforcement learning based multi-objective optimization … oxygen production system in integrated iron and steel plants. Applied Energy, 2023, 345: 121332.
L. Tang, P. Che, J. Wang. Corrective Unit Commitment to an Unforeseen Unit Breakdown. IEEE Transactions on Power Systems, 2012, 27(4): 1729-1740.



Information Feedback
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Game Theory 

❖ Game theory is the study of mathematical

models of strategic interactions among

rational decision-makers. Industrial

organization can be modeled as game

problem.

❖ Basic components include player, state,

action, payoff, strategy and equilibrium.

Game

⚫ Non-co. Game Cooperative Game

⚫ Static Game Dynamic Game

Mechanism Design

❖ Mechanism design is an economic

framework for understanding how business

can achieve optimal outcomes when

individual self-interest and incomplete

information may get in the way.

❖ Mechanism design theory is built on the

concept of game theory.

Mechanism Design

Participant Design

Data Analytics and Optimization for Manufacture-Circulation Industrial System

4. Full-dimension Organic Logistics Management System (E) 



L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.
(Best Paper Award for 2014~2023)
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4. Full-dimension Organic Logistics Management System (E) 

Game Modeling based on DAO



4. Full-dimension Organic Logistics Management System (E) — Production

Carbon-aware Production Scheduling Game

❖ Game Modeling: the scheduling of cold rolling production

and electricity consumption is formulated as non-

cooperative game model, which aims to make trade-off

between production efficiency and carbon emission.

❖ Game Solution: A co-evolutionary algorithm is developed to

solve the low-carbon cold rolling scheduling game problem

efficiently. Moreover, the solution process is enhanced via

Deep CycleNet initialization.

Carbon-aware Integrated Scheduling Game 

❖ Game Modeling: the carbon-aware integrated production

scheduling is formulated as cooperative game model. The

carbon footprint of whole process production is optimized

by forming a grand coalition of all production stages.

❖ Solution Methods: A row generation algorithm is developed

to solve the cooperative game model of integrated

production scheduling. The solving process is accelerated by

the reinforcement learning method.

Cold Rolling

Power Plant

Job
sequencing 

Job
sequencing 

carbon 
quota setting 

carbon 
quota setting 

Nash Equilibrium Carbon quota for cold rolling

Hot rolling 

scheduling

Cold rolling 

scheduling

Carbon quota for steelmaking

Steelmaking 

scheduling

Carbon quota for hot rolling

Data Analytics and Optimization for Manufacture-Circulation Industrial System



4. Full-dimension Organic Logistics Management System (E) — Logistics

In-port Logistics Game for Carbon Reduction

❖ Game modeling: In container ports, horizontal transport

between quays and yards consumes carbon emission. A

cooperative game allows trucks to share routes and

schedules, reducing empty trips and emissions.

❖ Game solution: A low-carbon scheduling model minimizes

transport and emission costs under time-window

constraints. Carbon savings are fairly shared through data-

driven optimization for efficient coordination.

Port-wide Logistics Game for Carbon Reduction

❖ Game modeling: Container ports are typical logistics

systems involving loading, transport, storage, and stacking.

A cooperative logistics network integrates operations for

low-carbon synergy.

❖ Game solution: A cooperative game model integrates

analytics and integer optimization to compute core

allocations of carbon and cost savings. The algorithm

improves efficiency for large-scale scheduling.

Container Handling In-port Container Transportation
Container Storage 

and Retrieval

Vessel Quay Crane Container Truck Gantry Crane Container Yard

Cooperative game for integrated logistics for carbon reductionCooperative game mechanism for typical logistics operation

Carbon and Cost Savings

Share routes and schedules

Minimize transport cost and emission cost



4. Full-dimension Organic Logistics Management System (E) — Energy

低碳 in energy

❖ Oxygen scheduling:.

❖ Cooperative game:

Integrated Energy Game for Carbon Reduction

❖ Game Modeling: For integrated energy systems, establish

non-cooperative game model and design collaborative

energy subsystem strategies to balance low-carbon

objectives with self-sufficiency.

❖ Solution Method: A RL guided conditional variational

autoencoder based dynamic multi-objective optimization is

established to online solve the model, yielding dynamic

game equilibria among multi subjects in each period.

Oxygen System Game for Carbon Reduction

❖ Game Modeling: Coordinate multi-unit oxygen operations to

reduce system-wide electricity consumption and carbon

emissions, with cooperative game ensuring fair carbon cost-

sharing.

❖ Game Solution: A hybrid row generation-OA algorithm

solves the model, quantifying each unit's marginal carbon

reduction contribution. Efficiency is enhanced via

reinforcement learning and parallel cutting planes.

Data Analytics and Optimization for Manufacture-Circulation Industrial System



4. Full-dimension Organic Carbon-Reduction System (E) — Information

Low-carbon Mechanism for Edge Computing Nodes

❖ Game Modeling: Design energy-aware caching at edge

nodes to meet power and carbon-intensity constraints,

reducing latency, bandwidth, and transmission energy

through incentive-driven low-carbon operation.

❖ Game Solution: A two-stage game-theoretic mechanism

coordinates edge–center topology via matching games and

optimizes caching through Stackelberg games over backhaul

links for low-carbon collaboration.

Low-carbon Mechanism for Computing Centers

❖ Game Modeling: Determine the workload allocation across

data centers, considering hardware heterogeneity, dynamic

electricity pricing, inter-center data transfer costs, and

carbon footprint reduction.

❖ Game Solution: A Stackelberg game model coordinates

workload allocation, where each task type minimizes carbon

emissions, and deep reinforcement learning derives

strategies toward Nash equilibrium.

Workload assignment

Workload assignment based on carbon 
reduction intensity

Cache assignment based on carbon 
reduction intensity
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DAO & LLM based Design and Simulation for MCIS (M)
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Enterprise Industry System

A tree A forest An eco-system

An enterprise Heterogeneous enterpriseHomogeneous enterprise

5. DAO & LLM based Design and Simulation for MCIS (M)
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Data Analytics and Optimization for Manufacture-Circulation Industrial System
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Assortment Planning Static Planning

Dynamic Planning Inventory Control

➢ Based on inventory status, an inventory control

model is constructed, and control strategies are

designed to ensure that the inventory level

remains within a reasonable range, thereby

guaranteeing the stability of the system.

➢ Based on the customer orders and inventory

structure, determine the production volume,

inventory, balance production, inventory costs

xxand service levels, and set initial values for the

xxx production & inventory systems.

➢ Taking into account the dynamic changes

in supply-demand, by continuously monitoring

fluctuations in demand, inventory status, and

dynamically adjusting production & inventory

strategies, the overall can be enhanced.

➢ Based on market demand and production

capacity, decisions are made regarding the

varieties and specifications to be produced,

production efficiency is enhanced while

meeting diverse demands.

5. DAO & LLM based Design and Simulation for MCIS (M) 



❖ Allocate the enterprise-wide carbon quota to the production, logistics, and energy systems

based on their emission reduction potentials, to achieve balanced emission responsibility and

coordinated low-carbon operation across the plant.

Total carbon quota for whole enterprise

Production system Logistics system Energy system

Enterprise-wide carbon quota allocation

5. DAO & LLM based Design and Simulation for MCIS (M) 

Synthesizing information

ironmaking Hot rolling Cold rollingSteelmaking



MCIS Carbon Reduction through Cooperation

5. DAO & LLM based Design and Simulation for MCIS (M) 

❖ The production and sales process of equipment

manufacturers (EM) can be modeled as an assortment

optimization model.

❖ EMs can cooperate to share the assortment they can

produce. Policies can encourage cooperation among EMs

to avoid duplication of development and promote a wider

range of low-carbon products.

❖ For the MCIS, diverse technologies and customized low-

carbon steel demands often lead to redundant production

and higher emission. A collaborative circular framework

enables joint production and low-carbon manufacturing.

❖ A cooperative game-based profit allocation mechanism

ensures fair sharing, while a data-driven core allocation

method optimization algorithm enhance efficiency.

Steel enterprises

Manufacturing enterprises

Coalition 𝑆

Exhibition

3 4 51 2

Policy requirement

2 5

EM 3EM 2

411 3

EM 1

4 51
Exhibition

2 3

Coalition 𝑆′

𝑐 𝑆 > 𝑐 𝐸𝑀𝑖
∀𝑖 ∈ 𝑁

Coalition 𝑆 exhibits 0 low carbon products

Coalition 𝑆′ exhibits all low carbon products

Collaborative Circular Framework

Joint Design

Joint Optimization

Joint Production

Xihua Liu, Shengnan Zhao, Lixin Tang. Carbon Emission Reduction in Manufacture-Circulation Industrial System: An Assortment Optimization Embedded Cooperative Game Theory Method. 2025 
INFORMS Annual Meeting, Atlanta.



❖ The carbon emission reduction in the supply
chain can be realized through the
information collection of all pollution
sources in the supply chain by enterprises,
and total carbon tax can be redistributed
among enterprises in the supply chain.

❖ The carbon emission problem of fossil fuel

supply chain is established as a cooperative

game model, and the nucleolar mechanism

is proposed to assign the carbon emission

responsibility of fossil fuel supply chain.

Gopalakrishnan S, Granot D, Granot F. Consistent allocation of emission responsibility in fossil fuel supply chains. Management Science, 2021, 67(12): 7637-7668.
Gopalakrishnan S, Granot D, Granot F, et al. Incentives and emission responsibility allocation in supply chains. Management Science, 2021, 67(7): 4172-4190.

𝑧𝑖 = 𝑎 𝑇𝑖𝑗 − 𝑧 𝑇𝑖𝑗 ,

𝑖𝑓 𝑧𝑗 ≥ 𝑎 𝑇𝑖𝑗 − 𝑧 𝑇𝑖𝑗

𝑧𝑖 = 𝑧𝑗 , 𝑖𝑓𝑧𝑗 ≤ 𝑎 𝑇𝑖𝑗 − 𝑧 𝑇𝑖𝑗
𝑧 𝑁 = 𝑐 𝑁 .
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1. Enterprise emission 
reduction

Each firm 𝑖 in
supply chain makes
efforts to reduce
emissions 𝑓𝑗 of the

processes 𝑗 where
𝑖 ∈ 𝑁𝑗.

Carbon Reduction Mechanism DesignCarbon Reduction Game

Total emissions σ𝑗∈𝑀 𝑓𝑗 

Allocation 𝜙𝑖 𝑖𝜖𝑁

Footprint σ𝑖∈𝑁𝜙𝑖 = σ𝑗𝜖𝑀 𝑓𝑗

Carbon penalty 𝑝𝑆𝜙𝑖

2. Responsibility allocation
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All-dimensional organic management

High quality and low carbon technology

System optimizationMechanism design Carbon sink tradingQuota allocation

Quality optimization Carbon reduction process

Mechanism Design and Optimization for Entire Life Cycle Carbon Reduction
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❖ Carbon cycle：Carbon elements store, migrate, exchange, and transform between human body and

the natural environment, being essential carriers for material and energy flows

➢ Carbon cycle in human body: Humans ingest carbohydrates, which are converted into glucose molecules absorbed by

cells. Metabolism enables the carbon cycle within the body, providing the material and energy basis for life activities.

➢ Carbon cycle in environment: Humans produce CO2 through respiration, which plants convert into carbohydrates via

photosynthesis. These carbohydrates then transfer to humans through the food chain, providing energy and materials.

➢ Carbon cycle in industries: Industrial CO2 can be converted through plant photosynthesis and photocatalytic reactions,

transforming CO2 into renewable hydrocarbon fuels, providing energy for industry.

Mobius

Human Industry

C ：Carbon

C

Breathe

Carbon in body（C）

CO2

Food

Photosynthesis/Photocatalytic

Carbon in plant（C）

Oxygen
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energy
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Water, light

Semi-conductor 
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h+ h+ h+ h+ h+

e- e- e- e- e-
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CH4

CH3OH

……

Emission

Fruit
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