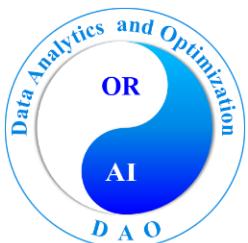


Data Analytics and Optimization for Manufacture-Circulation Industrial System

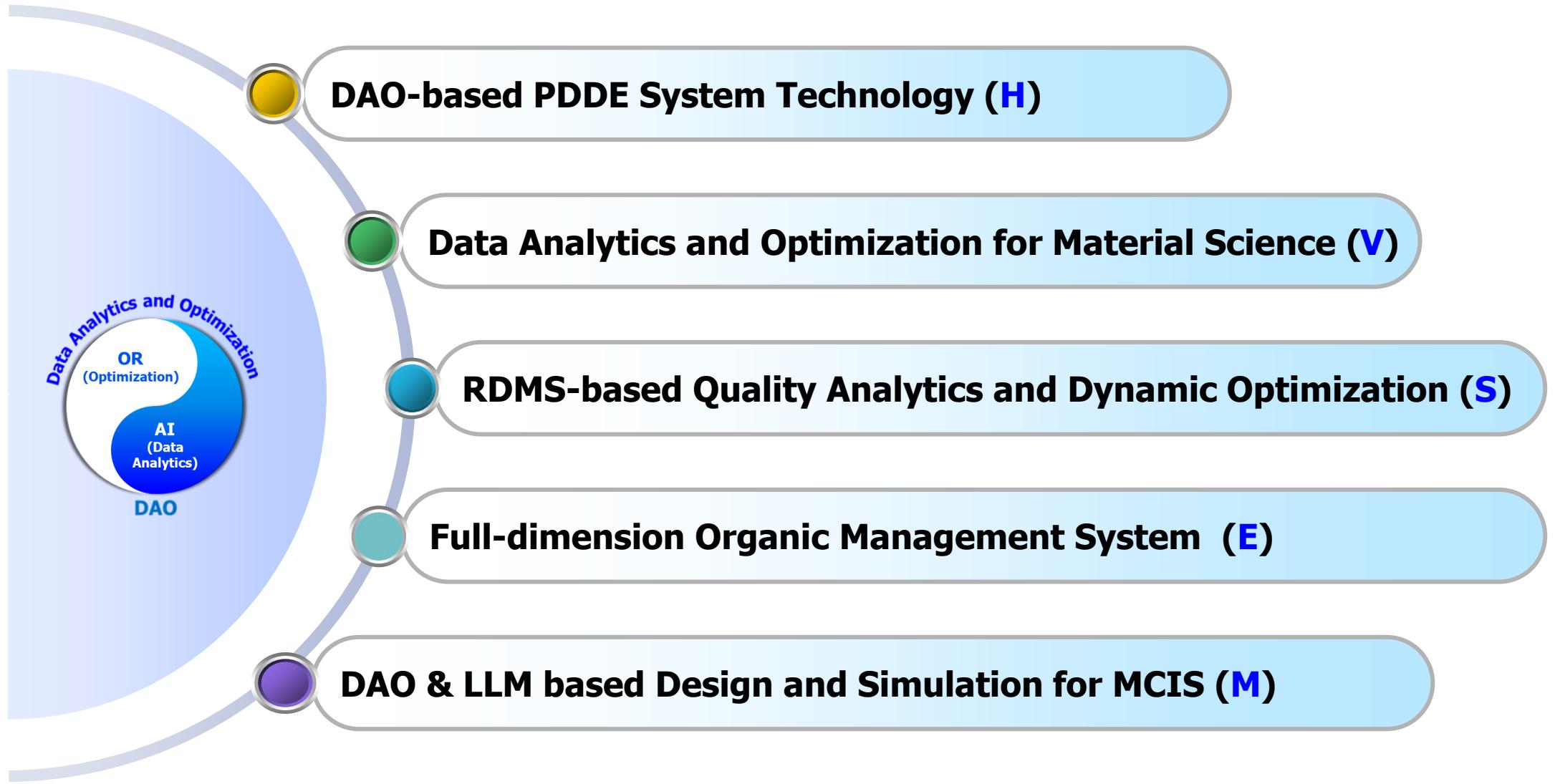
Lixin Tang



National Frontiers Science Center for Industrial Intelligence and Systems
Optimization, Northeastern University

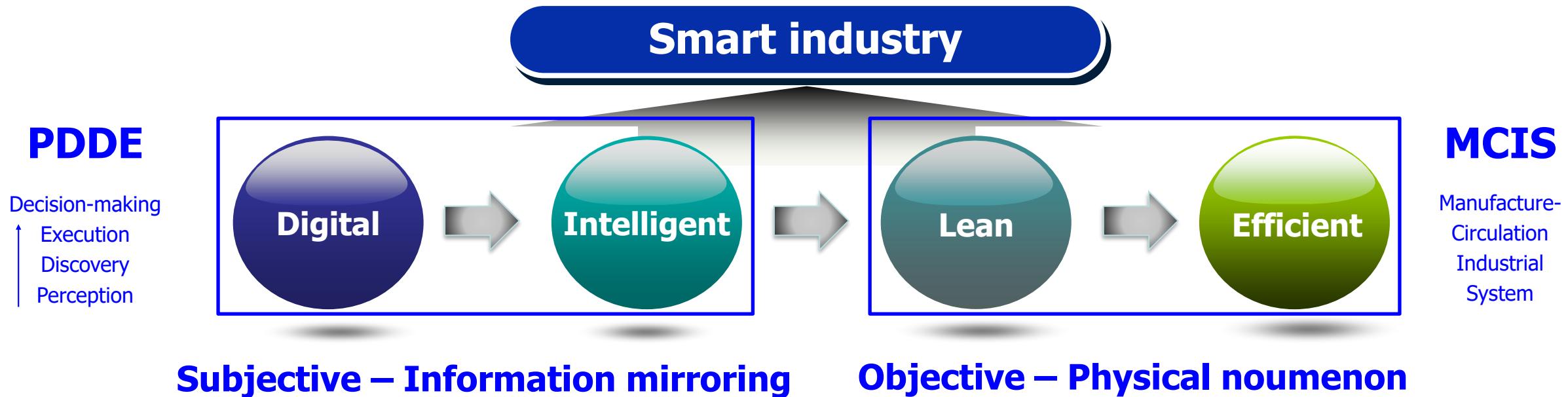
October 29 2025

Outline



Smart industry

Taking the cyber-physical systems realized by the Internet of Things as carrier, sensors are used to collect on-site perceived data through the network. According to the obtained data, data analytics technology is used to accurately understand, measure, diagnose and forecast the production, logistics and energy flow processes. On this basis, optimal decisions are made on production planning, scheduling, operation and control to realize the intelligent ability of factories.



Systems optimization is not only the key fundamental theory of complex decision-making, but also the core of industrial intelligence, as well as the heart and engine of data analytics.

Decision-making

- ❖ Many decision-making problems can be formulated as the following optimization problem:

$$\begin{aligned} \max \quad & \mathbf{c}^T \mathbf{x} \\ \textit{subject to} \quad & A \mathbf{x} \leq b \\ & \mathbf{x} \geq \mathbf{0} \\ & \mathbf{x} \in \mathbb{Z}^n \end{aligned}$$

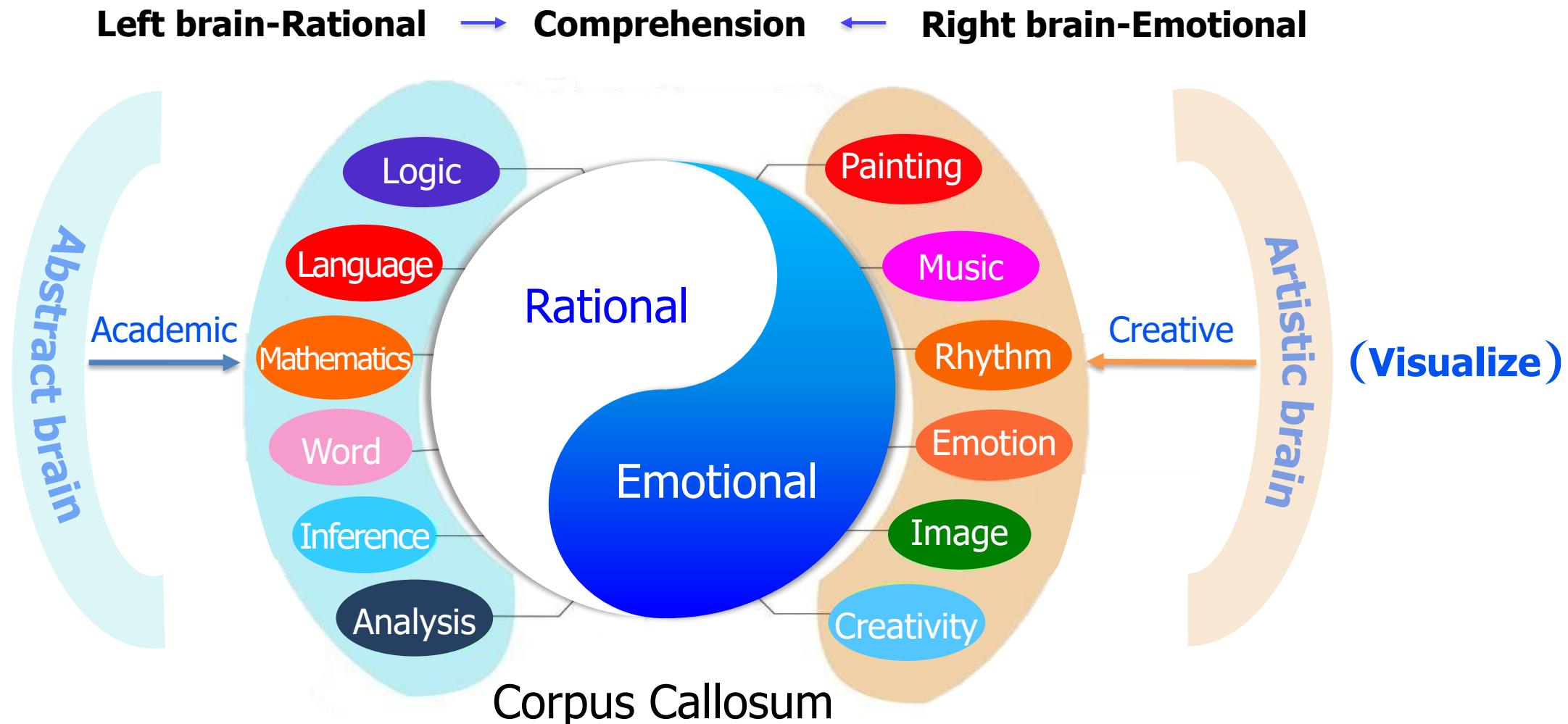
Data analytics

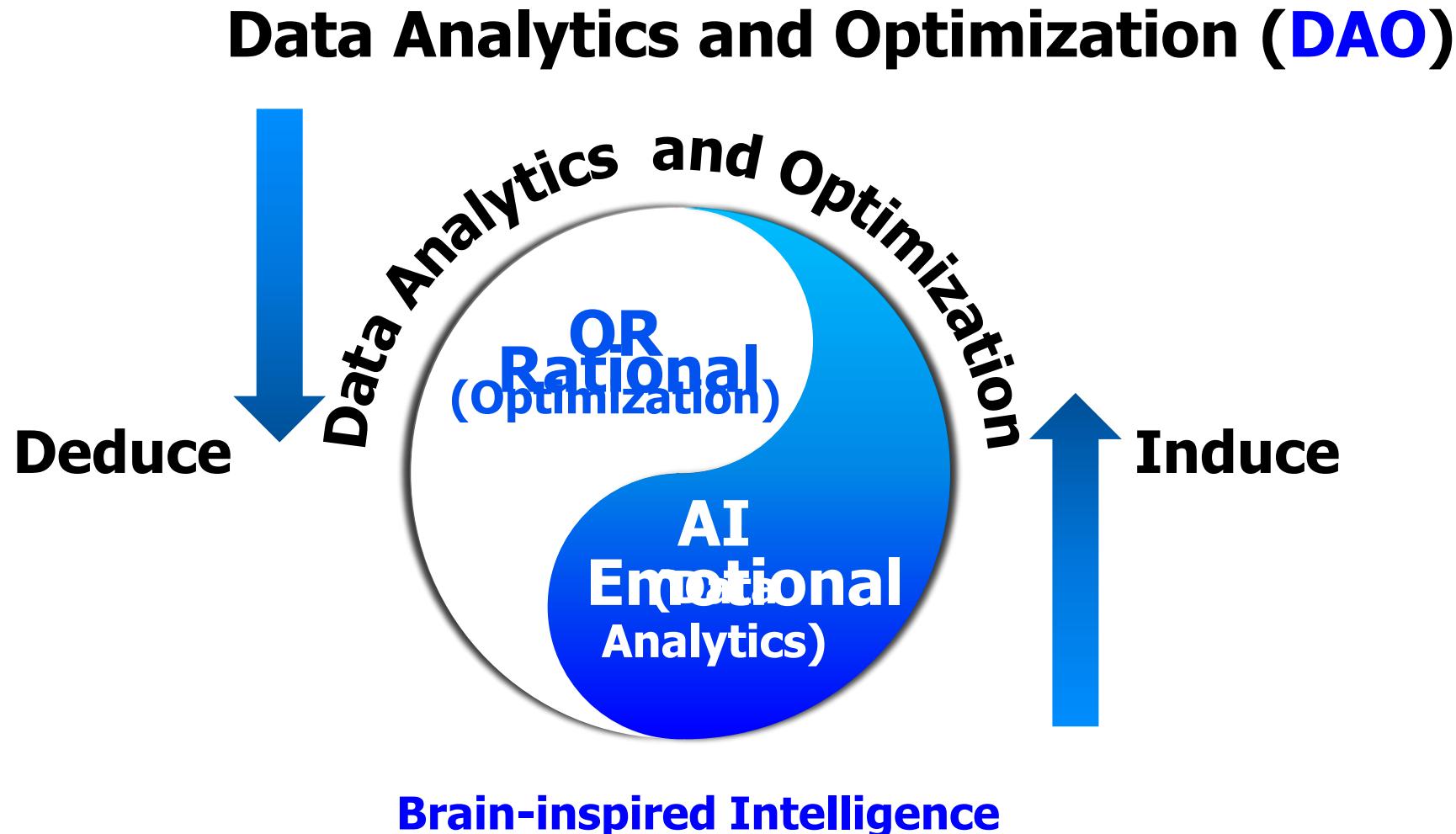
- ❖ Many machine learning problems can be formulated as the following optimization problem:

$$\begin{aligned} \min_x \quad & f(x) \\ \textit{subject to} \quad & g(x) \leq 0 \\ & h(x) = 0 \\ & x \in \Omega \end{aligned}$$

Data Analytics and Optimization – DAO based System Modeling

- ❖ Perceptual cognition is the basis of rational cognition; and rational cognition is the sublimation of perceptual cognition, which are unified in practice.

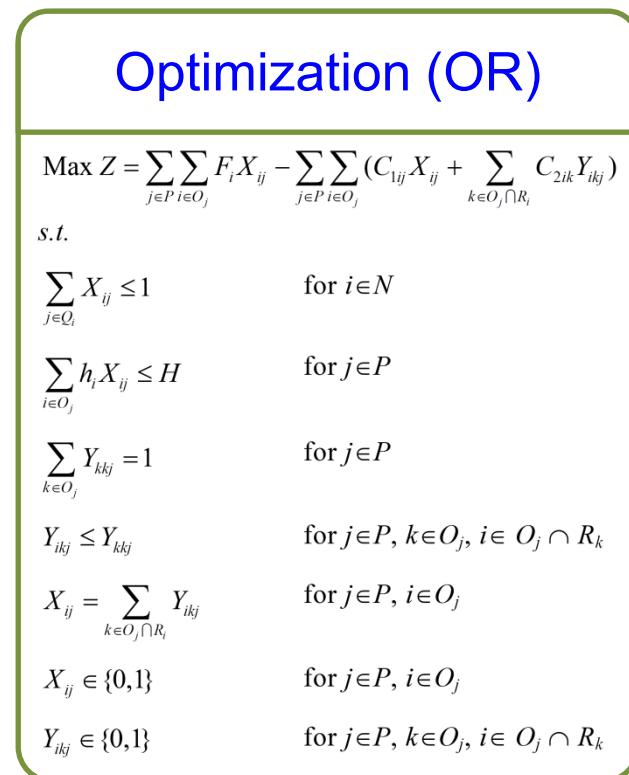
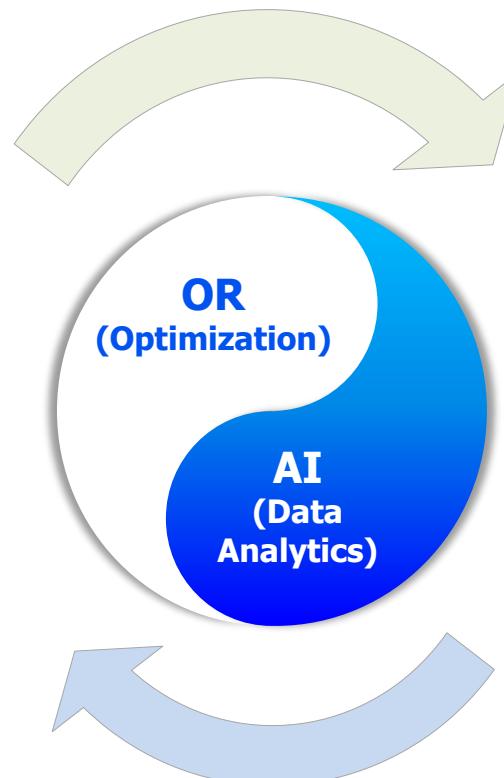
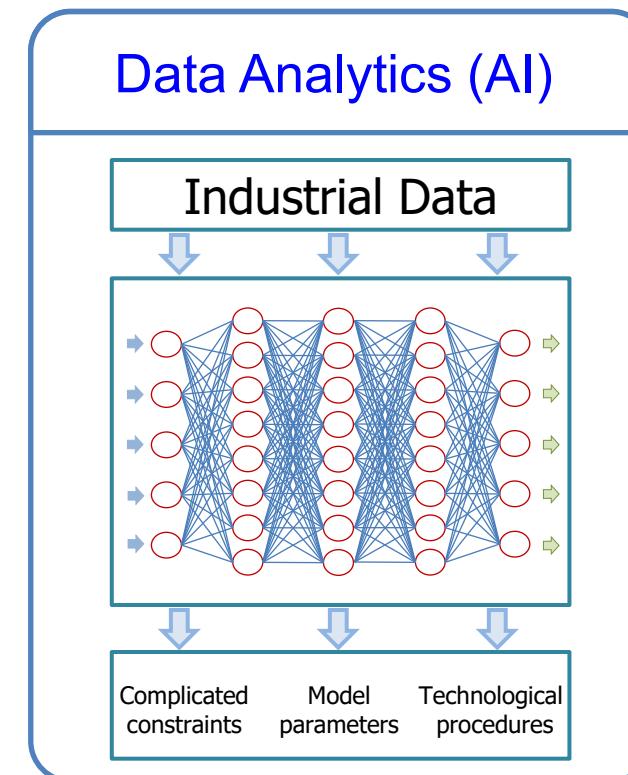




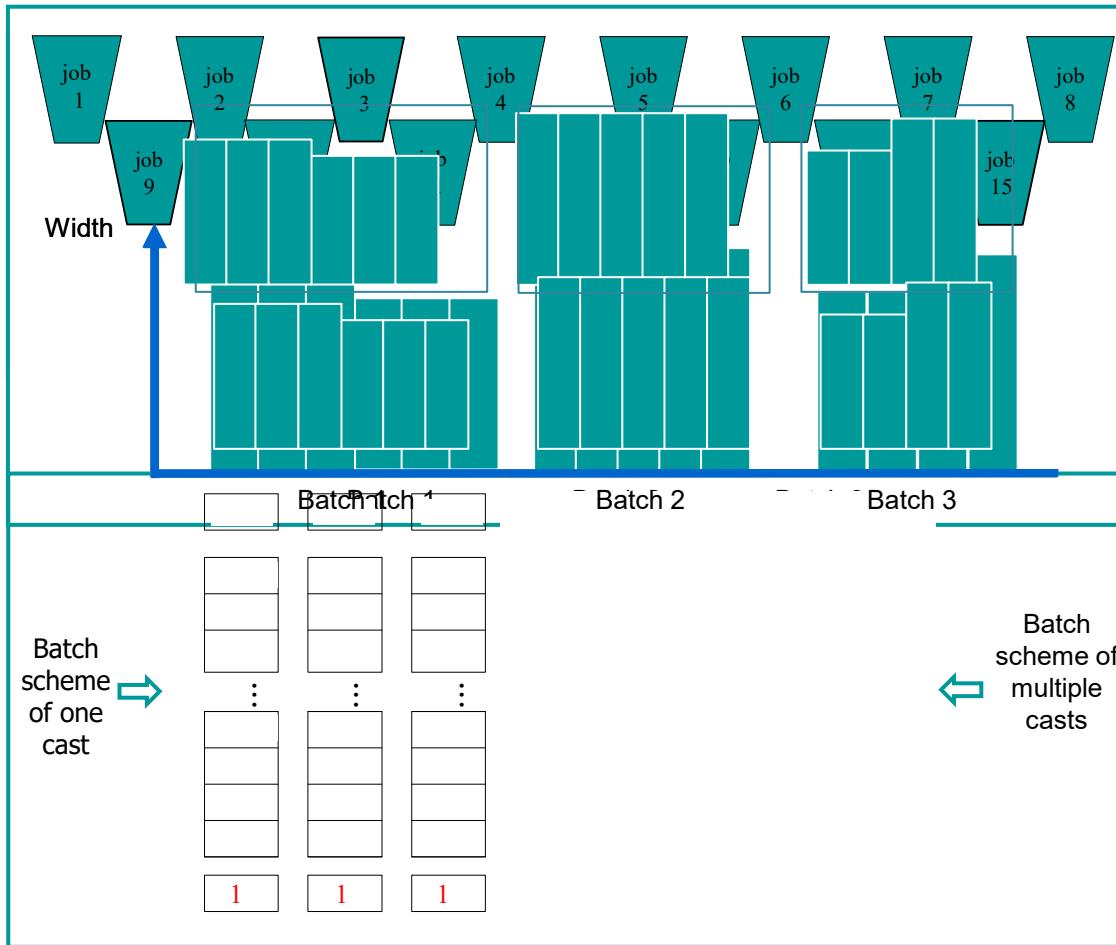
Data Analytics and Optimization – DAO based System Modeling

- ❖ Mathematical modeling is used to formulate the identifiable and quantifiable parts of the production, logistics and energy optimization problems. Meanwhile, data analytics supplements the mathematical model for constructing the parts that are hardly to model and forming the parameters of the model.

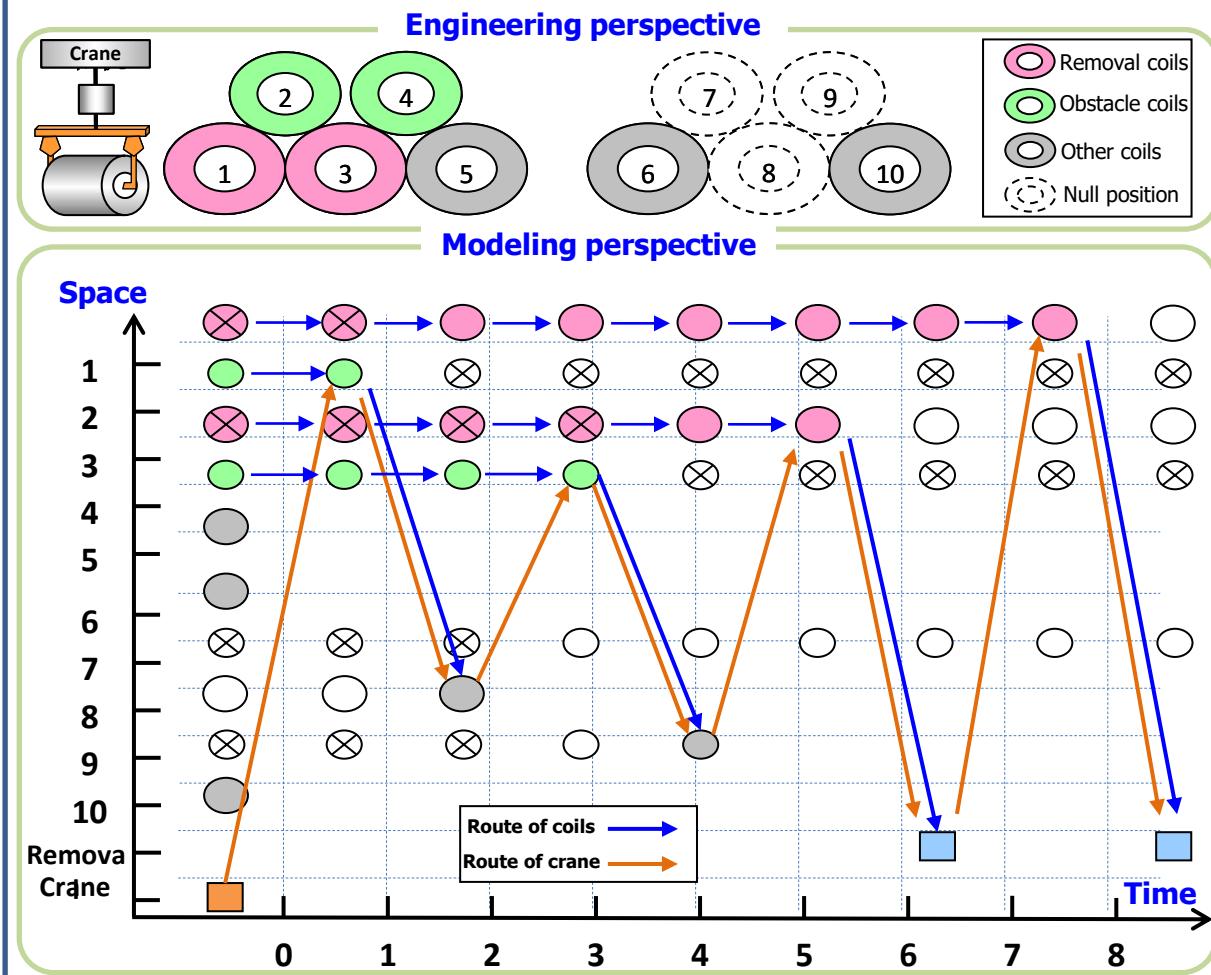
DAO based System Modeling



Production: Set-packing Modeling

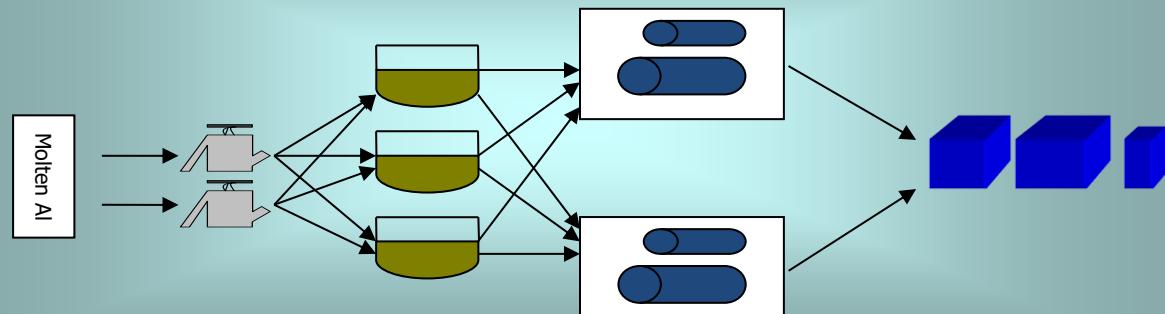


Logistics: Space-time Network Flow Modeling

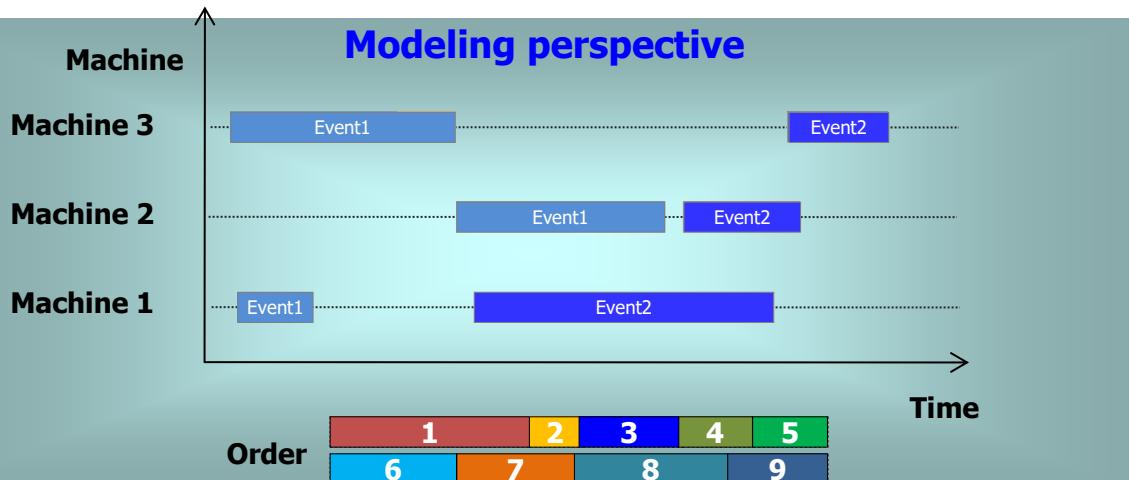


Energy: Continuous-time Modeling

Engineering perspective



Modeling perspective



Information: Generalized Disjunctive Programming

$$\min z = f(x) + \sum_{k \in K} c_k$$

$$s.t. \quad g(x) \leq 0$$

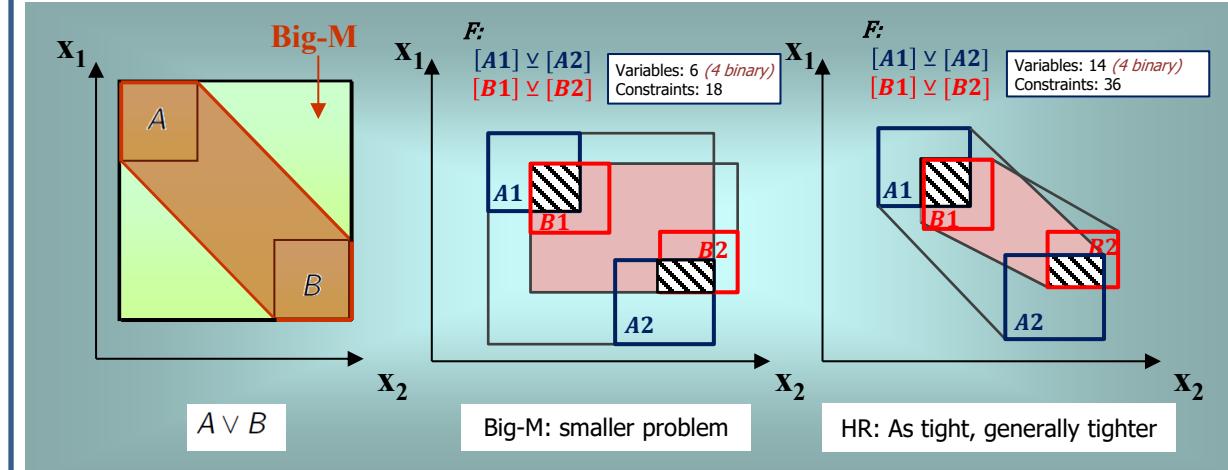
$$\bigvee_{i \in D_k} \begin{bmatrix} Y_{ik} \\ r_{ik}(x) \leq 0 \\ c_k = \gamma_{ik} \end{bmatrix}$$

$$\Omega(Y) = \text{True}$$

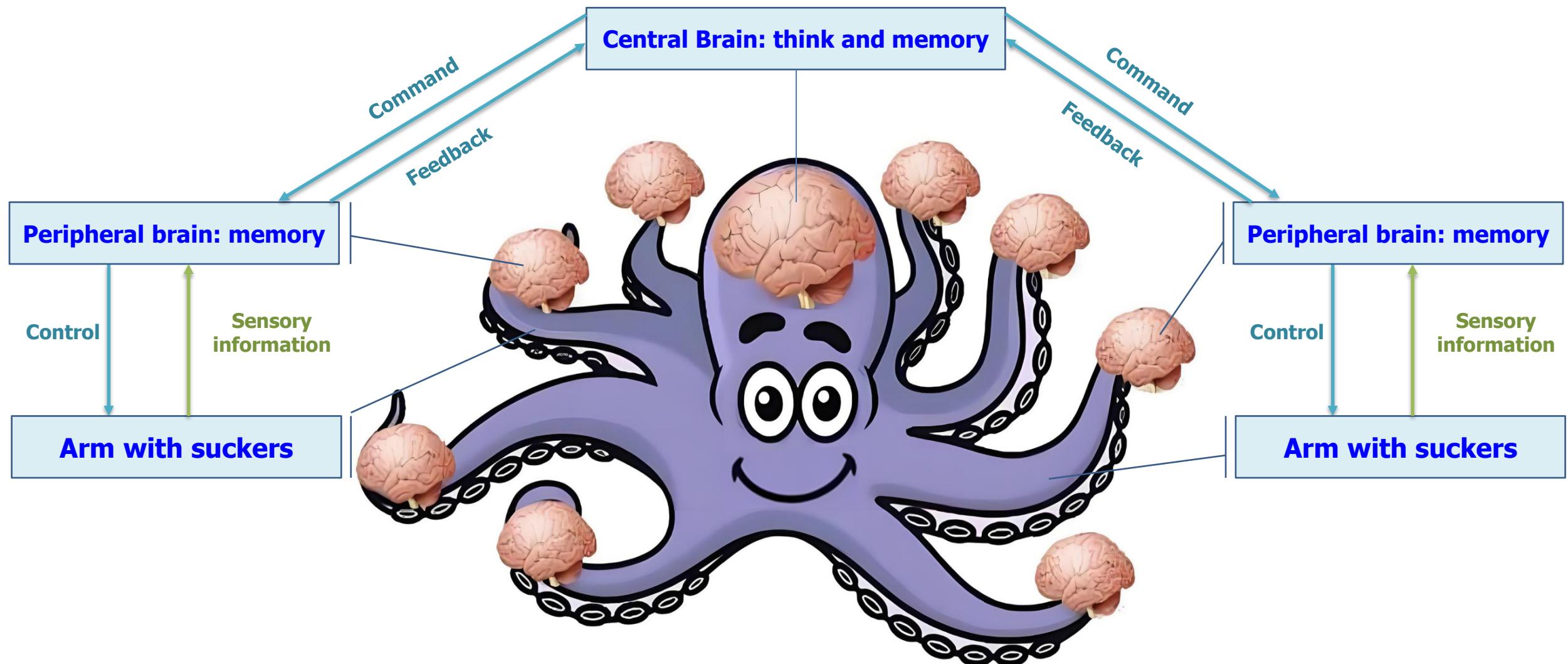
$$x^{lo} \leq x \leq x^{up}$$

$$x \in \mathbb{R}^n, c_k \in \mathbb{R}^1,$$

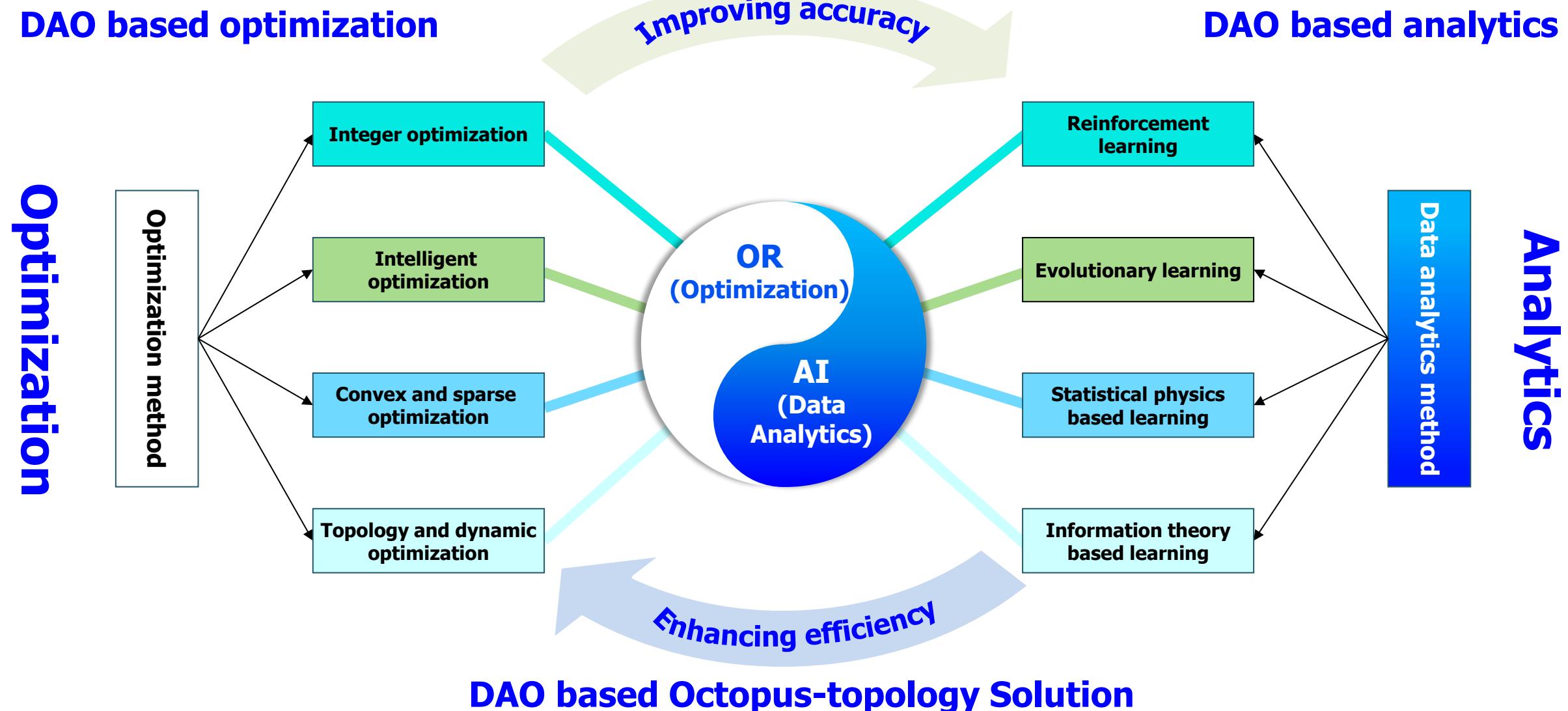
$$Y_{ik} \in \{\text{True}, \text{False}\}$$



Data Analytics and Optimization – DAO based Solution



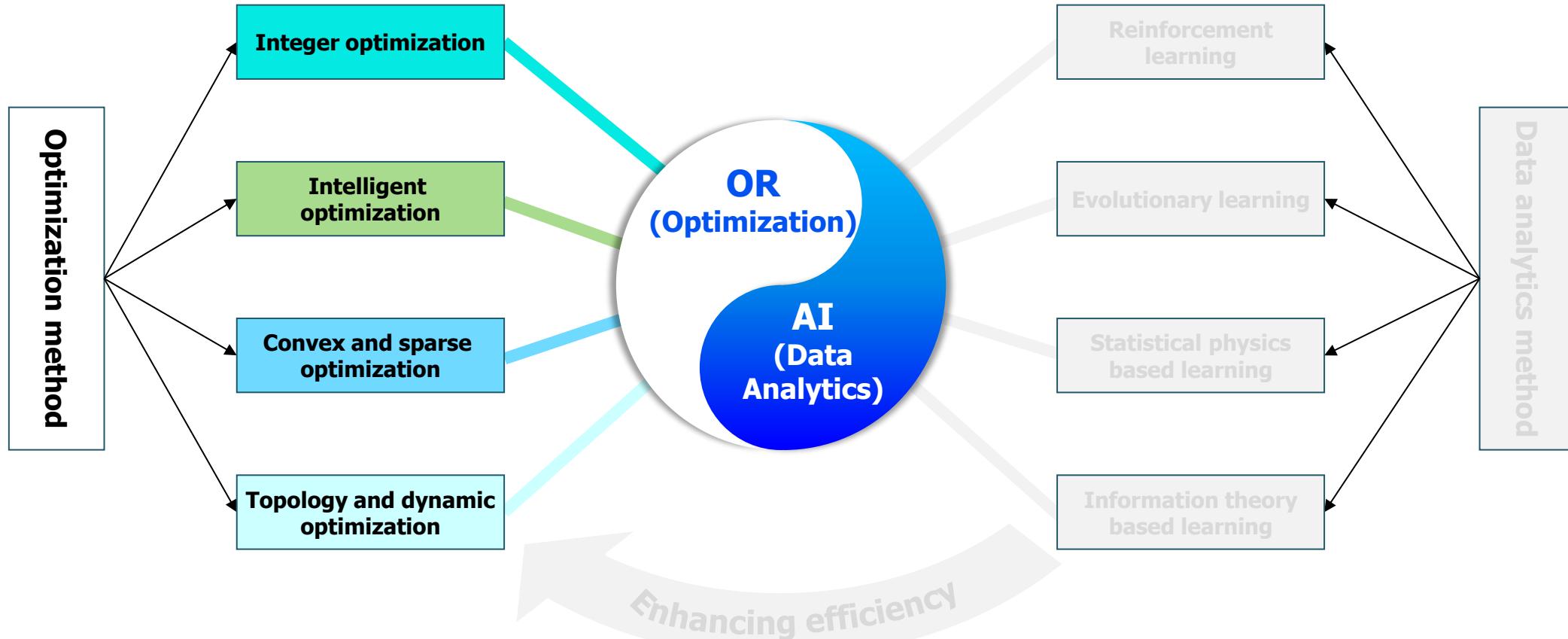
Data Analytics and Optimization – DAO based Solution



Data Analytics and Optimization – DAO based Solution

DAO based optimization

Optimization

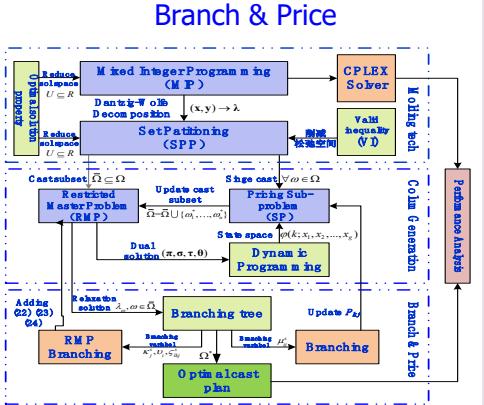


DAO based Octopus-topology Solution

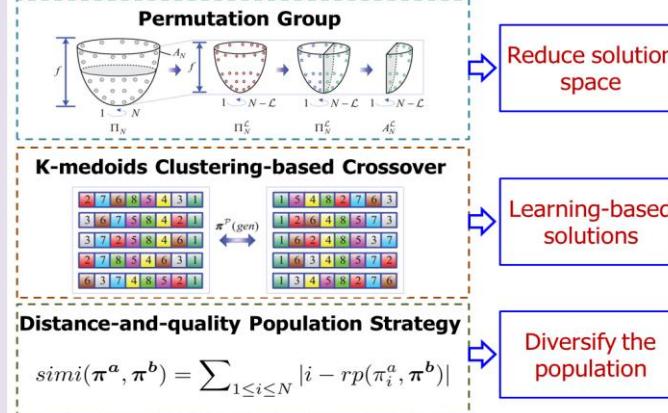
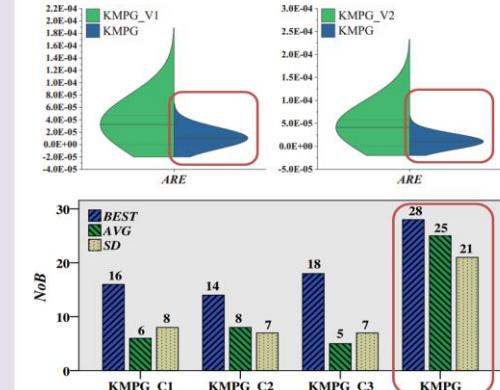
Data Analytics and Optimization — DAO based Solution

Integer optimization

- ❖ A Branch & Price approach is proposed based on set packing model.
- ❖ Discover the trapezoidal feature of the cost structure and construct a new low-dimensional dynamic programming algorithm, which overcomes the high-dimensional feature of the conventional dynamic programming algorithm.
- ❖ Propose a multi-layer branching strategy with sub-problem structure.
- ❖ For the first time, it realizes the optimal solving of the same kind of problem.



Intelligent optimization

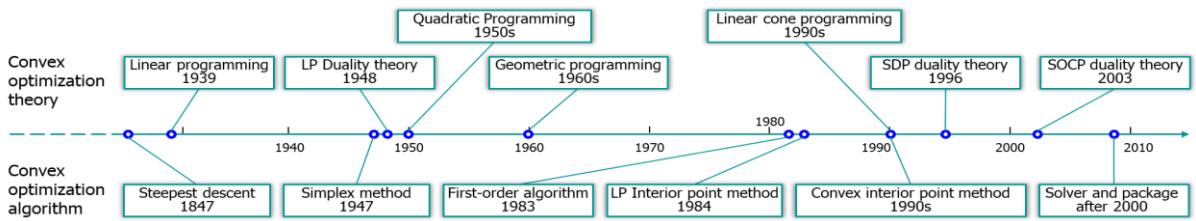


Convex and sparse optimization

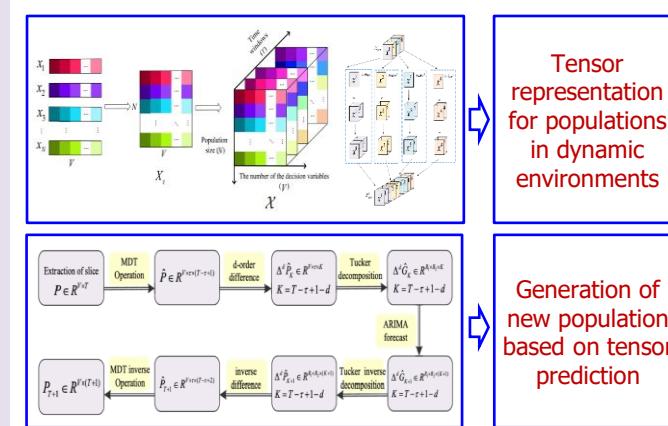
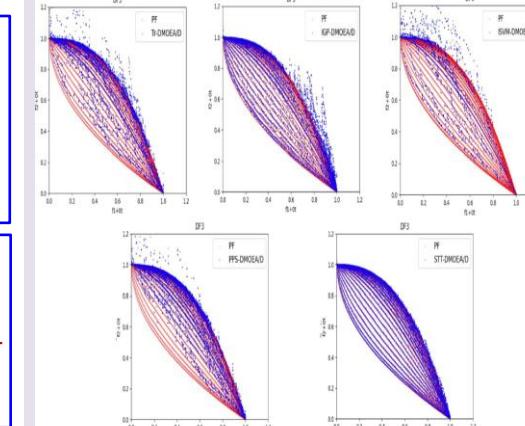
A general convex optimization problem is

$$\begin{aligned} \min \quad & f_0(x) \\ \text{s. t.} \quad & f_i(x) \leq 0, i = 1, 2, \dots, m \\ & h_i(x) = 0, i = 1, 2, \dots, p \end{aligned}$$

where $f_0, f_1, \dots, f_m : \mathbb{R}^n \rightarrow \mathbb{R}$ are convex functions and $h_1, h_2, \dots, h_p : \mathbb{R}^n \rightarrow \mathbb{R}$ are affine.



Topology and dynamic optimization



L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. *Operations Research*, 2014, 62(4): 772-787.

L. Tang, T. Li, Y. Meng, J. Liu. Searching in symmetric solution space ... *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025. (IF: 18.6)

L. Tang, Z. Li and J. Hao. Solving the single row facility layout ... permutation group. *IEEE Transactions on Evolutionary Computation*, 2023, 27(2): 251-265. (IF: 12)

X. Wang, Y. Zhao, L. Tang and X. Yao. MOEA/D with spatial-temporal ... multiobjective optimization. *IEEE Transactions on Evolutionary Computation*, 2025, 29(3): 764-778.

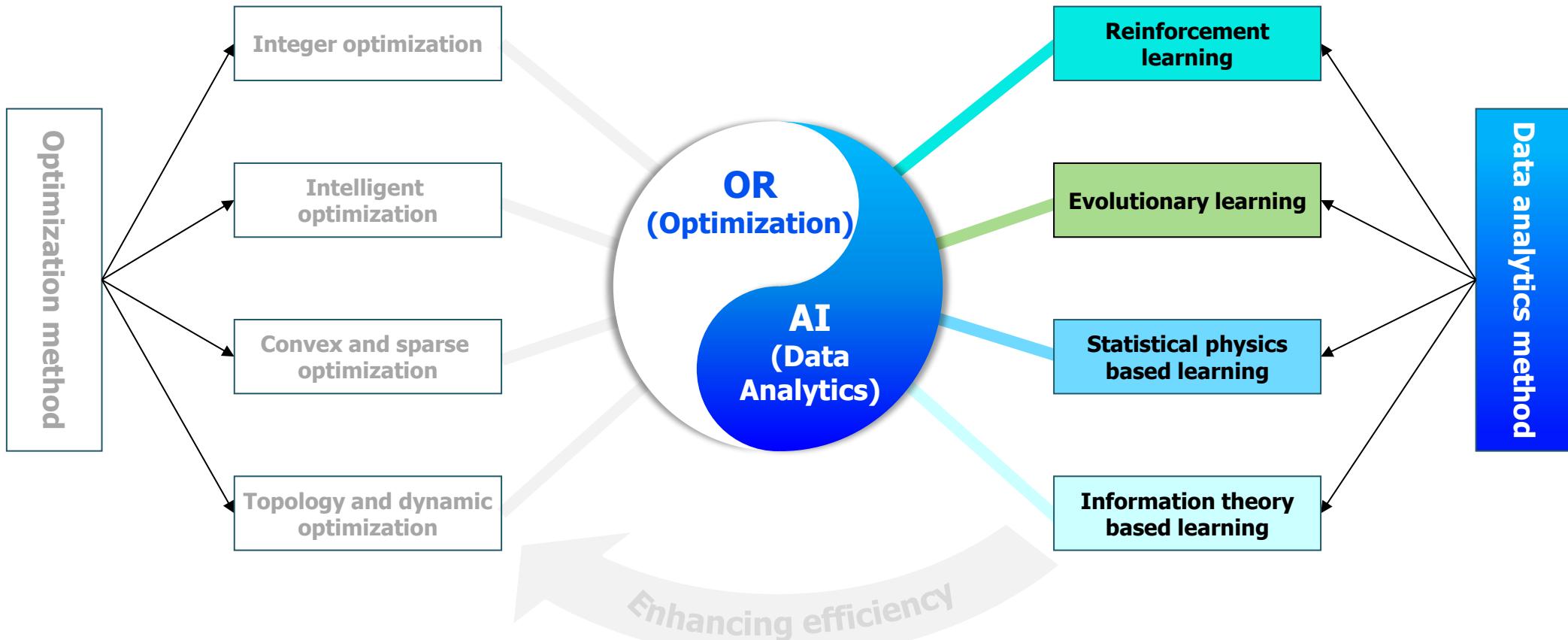
Data Analytics and Optimization – DAO based Solution

DAO based optimization

DAO based analytics

Optimization

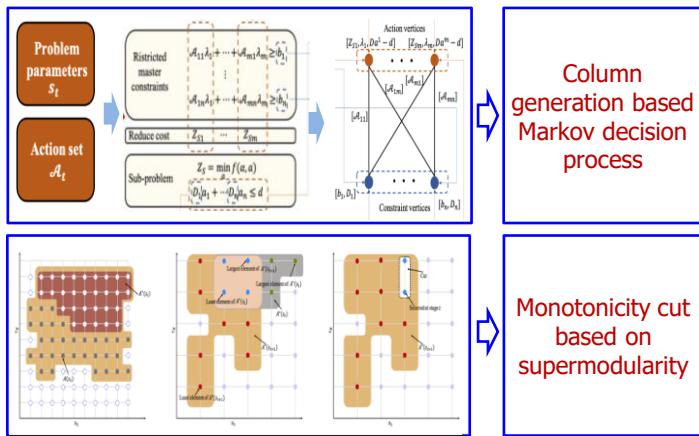
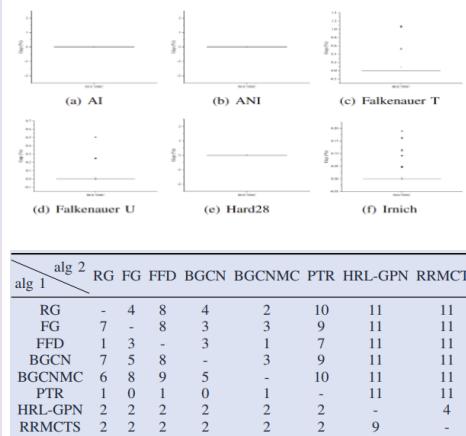
Analytics



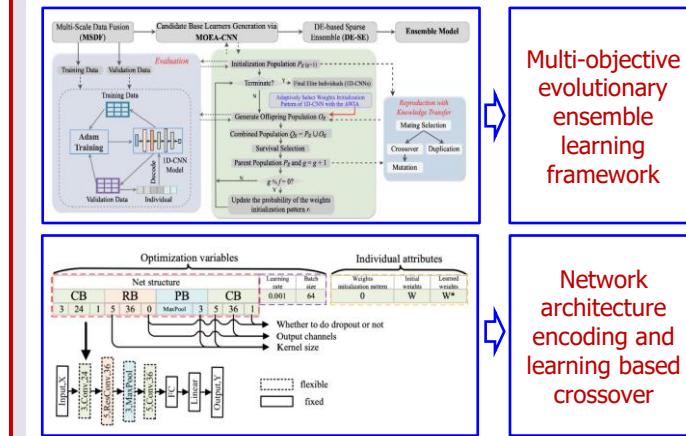
DAO based Octopus-topology Solution

Data Analytics and Optimization — DAO based Solution

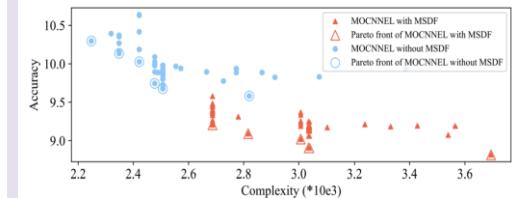
Reinforcement learning



Evolutionary learning

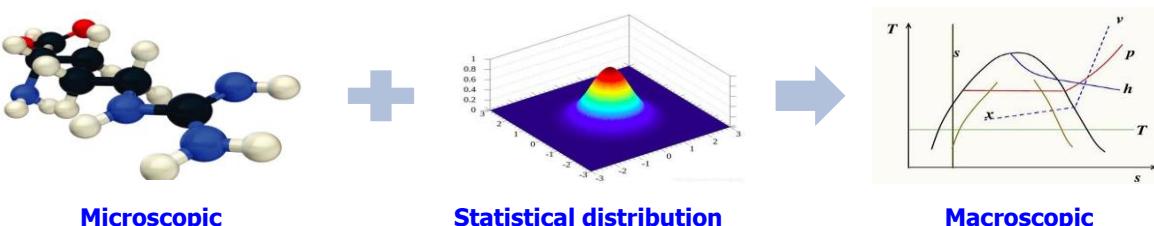


Category	Method	R ²		ARE		RMSE	
		Best	Mean \pm St.dev	Best	Mean \pm St.dev	Best	Mean \pm St.dev
Single learner	BPN [81]	6.22e-1	5.26e-1 \pm 5.41e-2 ⁽⁺⁾	1.42e-2	1.62e-2 \pm 8.78e-4 ⁽⁺⁾	11.62e+0	13.15e+0 \pm 8.92e-1 ⁽⁺⁾
	ID-CNN [131]	7.09e-1	6.26e-1 \pm 4.96e-2 ⁽⁺⁾	1.32e-2	1.44e-2 \pm 7.64e-4 ⁽⁺⁾	10.17e+0	11.66e+0 \pm 7.85e-1 ⁽⁺⁾
Traditional ensemble method	Abdou, ID-CNN [12]	7.46e-1	6.09e-1 \pm 3.77e-2 ⁽⁺⁾	1.27e-2	1.38e-2 \pm 8.92e-4 ⁽⁺⁾	9.64e+0	10.89e+0 \pm 7.70e-1 ⁽⁺⁾
	Bagging, ID-CNN [12]	7.32e-2	0.51e-1 \pm 0.48e-2 ⁽⁺⁾	1.26e-2	1.37e-2 \pm 8.88e-4 ⁽⁺⁾	9.71e+0	11.27e+0 \pm 8.78e-1 ⁽⁺⁾
Powerful ensemble learning method	MO-SELM [11]	6.40e-1	5.47e-1 \pm 4.35e-2 ⁽⁺⁾	1.49e-2	1.61e-2 \pm 5.64e-4 ⁽⁺⁾	11.66e+0	12.85e+0 \pm 7.44e-1 ⁽⁺⁾
	NSDE, EL-ANS [38]	7.15e-1	5.64e-1 \pm 4.22e-2 ⁽⁺⁾	1.41e-2	1.64e-2 \pm 5.64e-4 ⁽⁺⁾	10.59e+0	12.57e+0 \pm 7.21e-1 ⁽⁺⁾
	MOSNE-EPS [18]	7.06e-1	6.48e-1 \pm 3.65e-2 ⁽⁺⁾	1.26e-2	1.35e-2 \pm 4.08e-4 ⁽⁺⁾	9.99e+0	10.92e+0 \pm 7.20e-1 ⁽⁺⁾
	CNE [39]	6.97e-1	5.80e-1 \pm 3.56e-2 ⁽⁺⁾	1.25e-2	1.40e-2 \pm 3.76e-4 ⁽⁺⁾	9.88e+0	12.84e+0 \pm 7.36e-1 ⁽⁺⁾
	EF [39]	7.59e-1	6.96e-1 \pm 3.61e-2 ⁽⁺⁾	1.19e-2	1.30e-2 \pm 3.52e-4 ⁽⁺⁾	9.43e+0	10.52e+0 \pm 7.28e-1 ⁽⁺⁾
	EF [39]	7.59e-1	6.96e-1 \pm 3.61e-2 ⁽⁺⁾	1.34e-2	1.55e-2 \pm 7.58e-4 ⁽⁺⁾	10.40e+0	12.28e+0 \pm 8.11e-1 ⁽⁺⁾
Our method	MOCNEL-MSDF	7.74e-1	7.18e-1 \pm 3.22e-2 ⁽⁺⁾	1.16e-2	1.25e-2 \pm 7.72e-4 ⁽⁺⁾	9.19e+0	10.13e+0 \pm 6.31e-1 ⁽⁺⁾



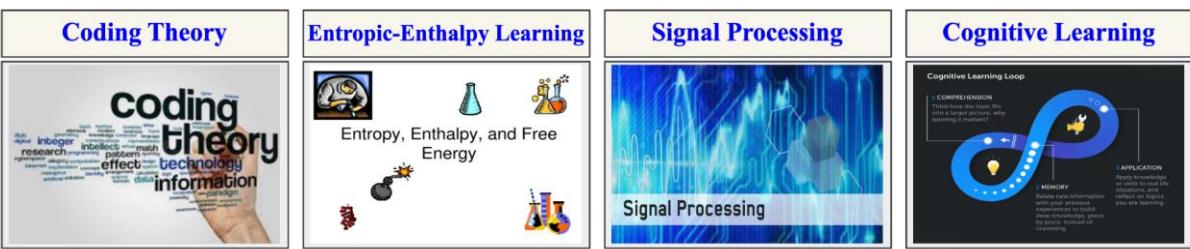
Statistical physics based learning

Based on the theory of statistical physics, the correlation is established between the movement of a large number of microscopic particles and the characteristics of macroscopic behaviors, corresponding microscopic particles to data, and macroscopic behaviors to knowledge, and an explainable learning model with parameters with physical meaning is constructed.



Information theory based learning

Several important concepts related to information theory are always presented in machine learning: information entropy, information gain, information gain ratio, etc. The applications of information theory in machine learning are mainly in the construction of loss functions, the construction of models, and the research of deep learning interpretability.

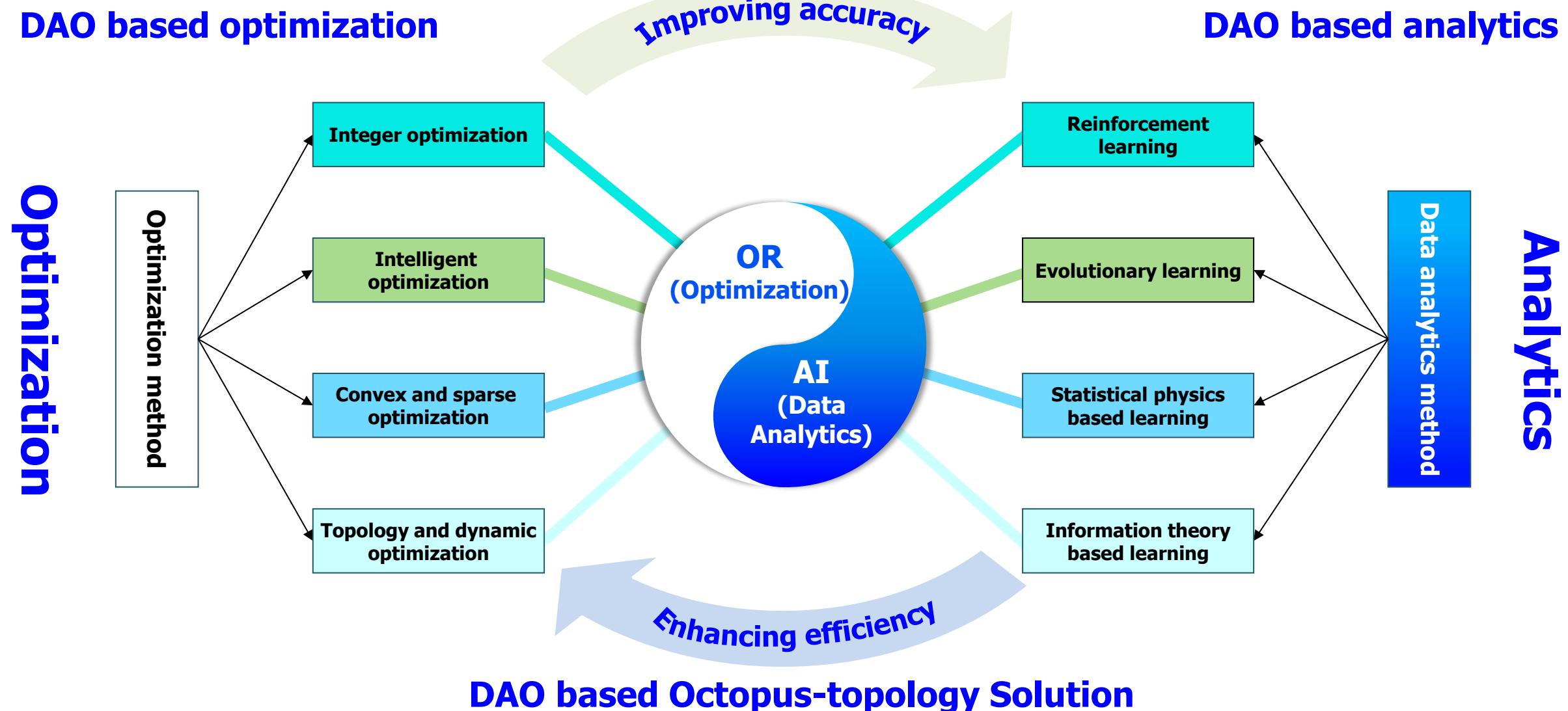


Y. Meng, F. Shi, L. Tang. Improvement of reinforcement learning ... *IEEE Transactions on Neural Networks and Learning Systems*, 2023, 34(9): 5298-5309.

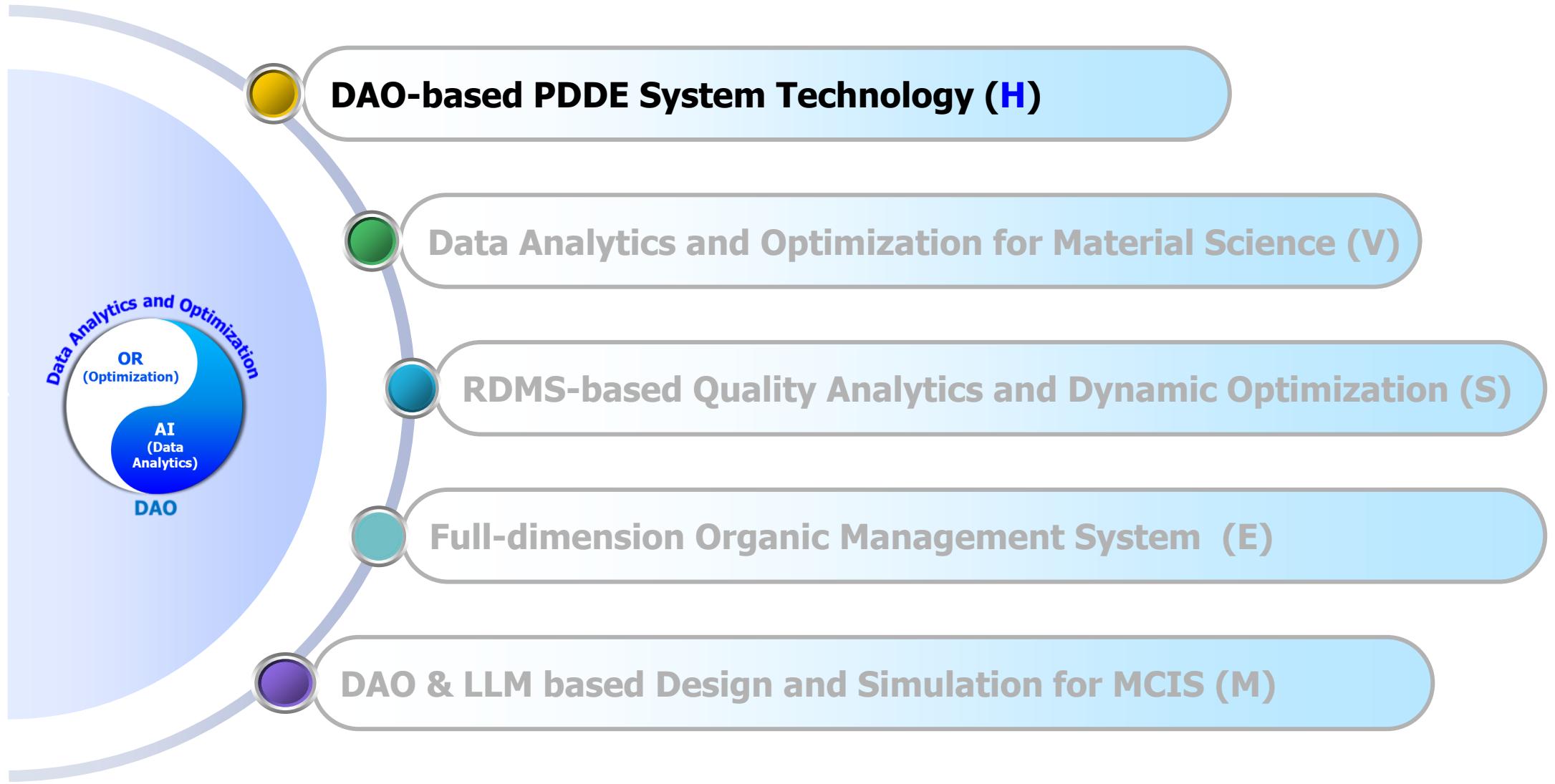
X. Wang, Y. Wang, L. Tang and Q. Zhang. Multi-objective ensemble learning with... *IEEE Transactions on Evolutionary Computation*, 2024, 28(4): 1099–1113. (IF: 12)

X. Wang, J. Zhang, L. Tang, Y. Liu. Evolutionary direction learning with multivariate Gaussian probabilistic model for multiobjective optimization. *IEEE Transactions on Evolutionary Computation*, 2025.

Data Analytics and Optimization – DAO based Solution



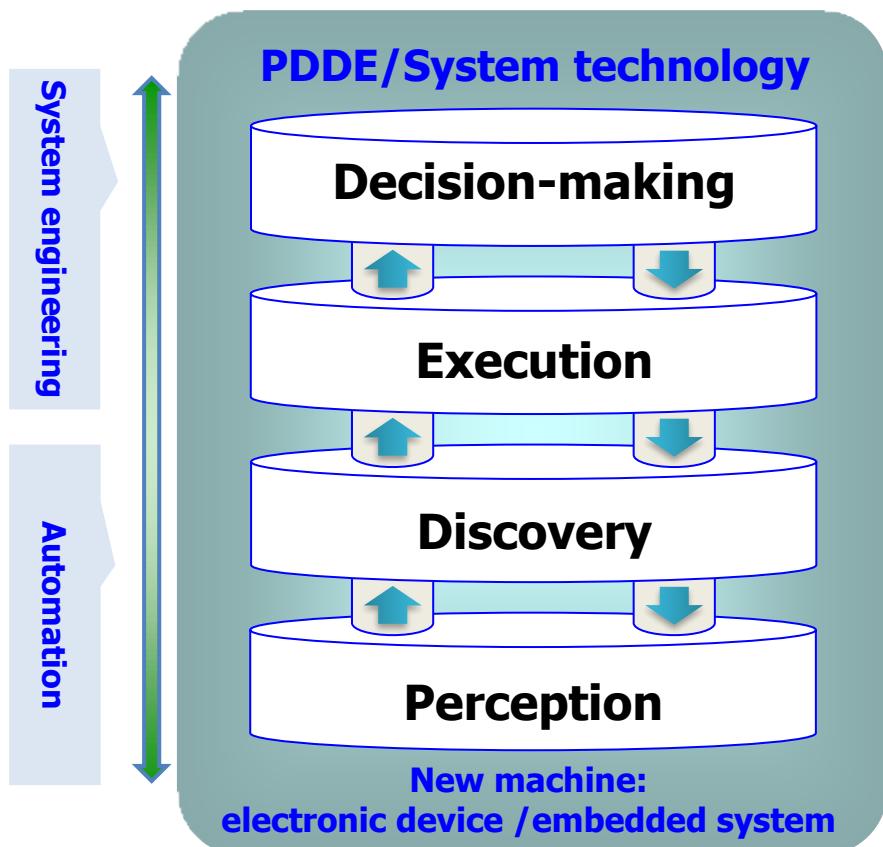
Outline



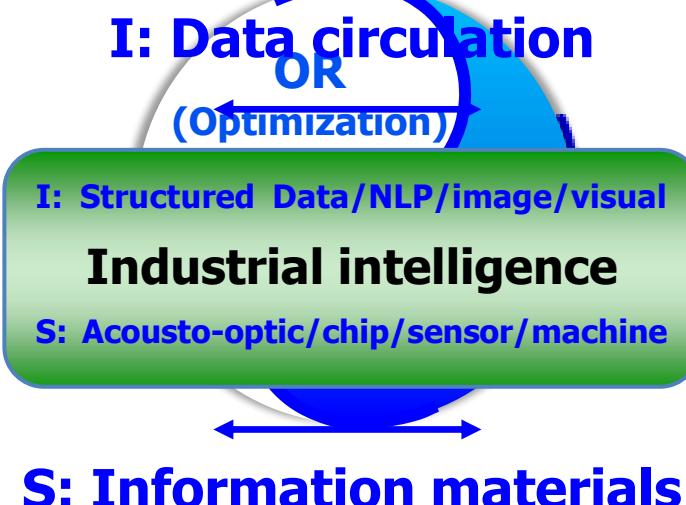
1. DAO-based PDDE System Technology (H)

New Machine

C: Brain-inspired intelligence

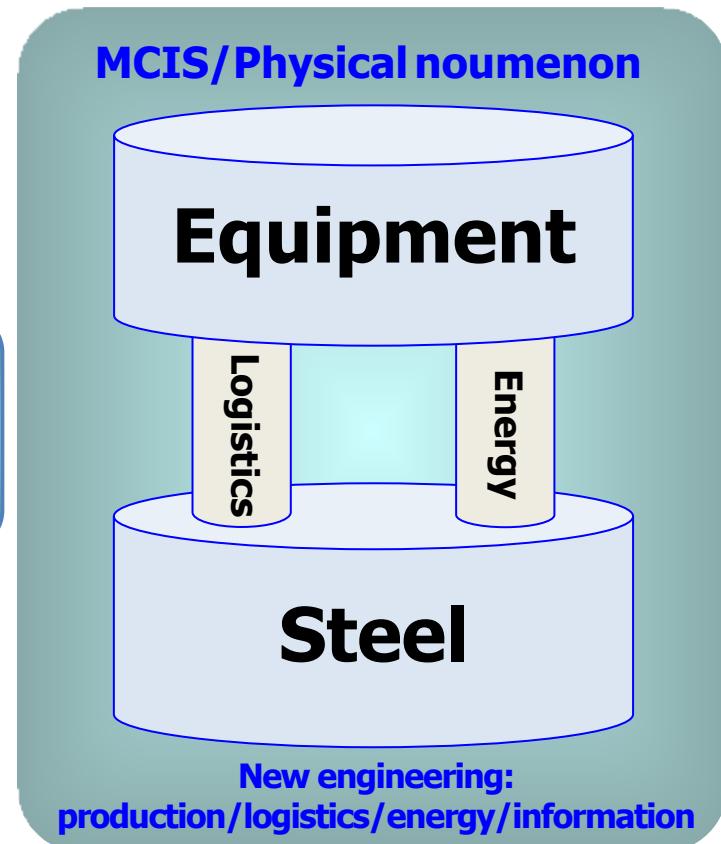


S: Electronic materials



New Engineering

C: Biology-inspired intelligence



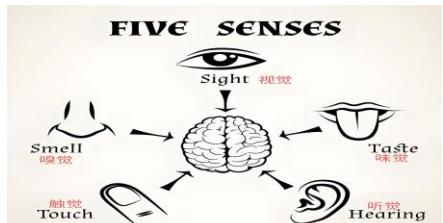
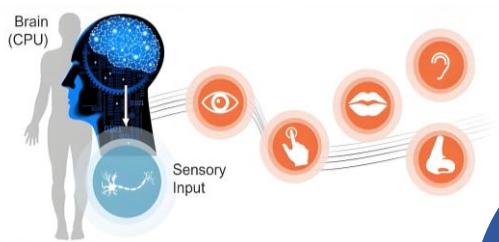
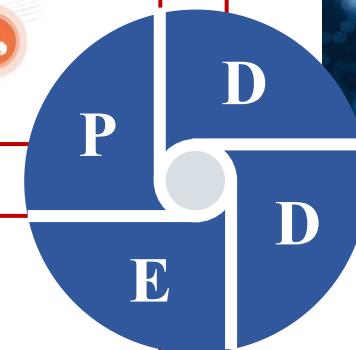
F: Steel materials

H = Hierarchy + Human = Brain-inspired intelligence (PDDE) + Industrial intelligence (SI) + Biology-inspired intelligence (MCIS)

1. DAO-based PDDE System Technology (H)

Perception (P)

- The origin of cognition, sensory systems (such as **vision, hearing, touch, and taste**) convert external stimuli into neural signals via **receptors**



Discovery (D)

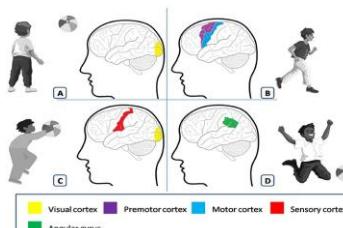
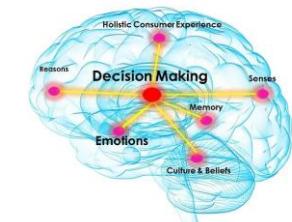
- Signals are transmitted to association cortex (e.g., prefrontal and parietal), combined with **memory and experience** for integration and cognitive modeling

Execution (E)

- Motor cortex transforms decisions into action commands, basal ganglia regulate initiation, force and coordination, with feedback via thalamus

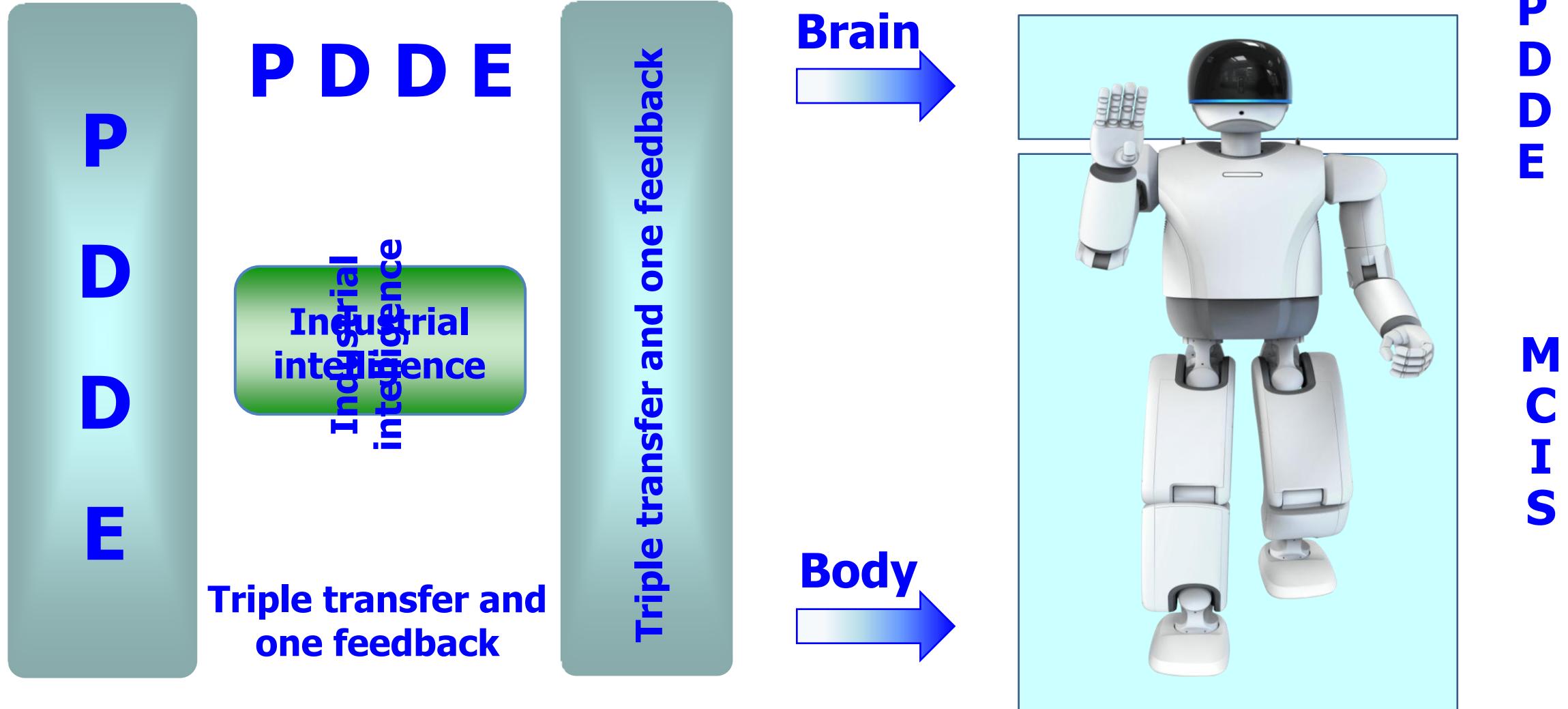
Decision (D)

- Decision-making involves cooperation of multiple **neural systems**, with synaptic connections in cortical circuits supporting learning and task decision



1. DAO-based PDDE System Technology (H)

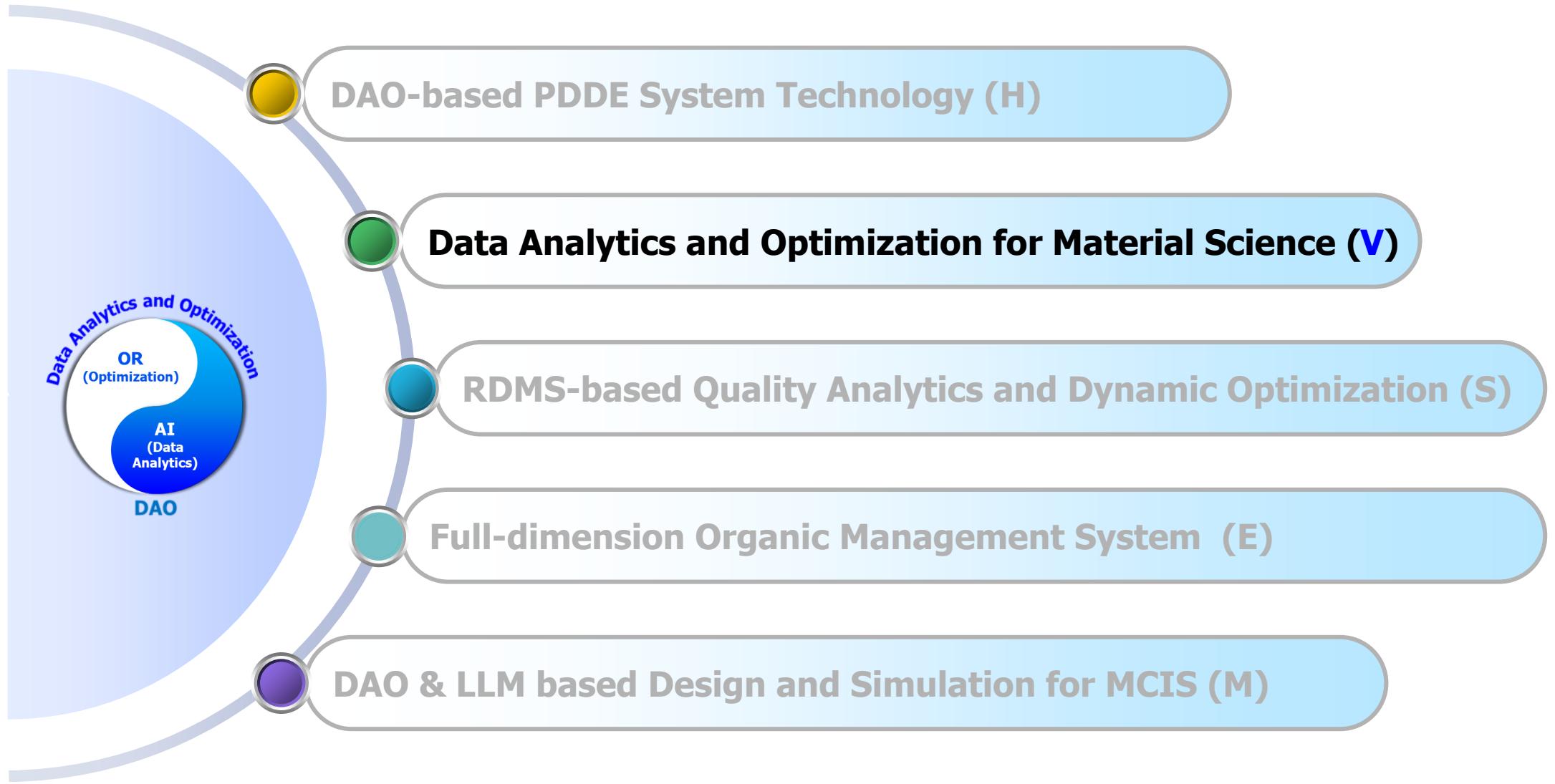
Full-dimension Organic System Intelligence



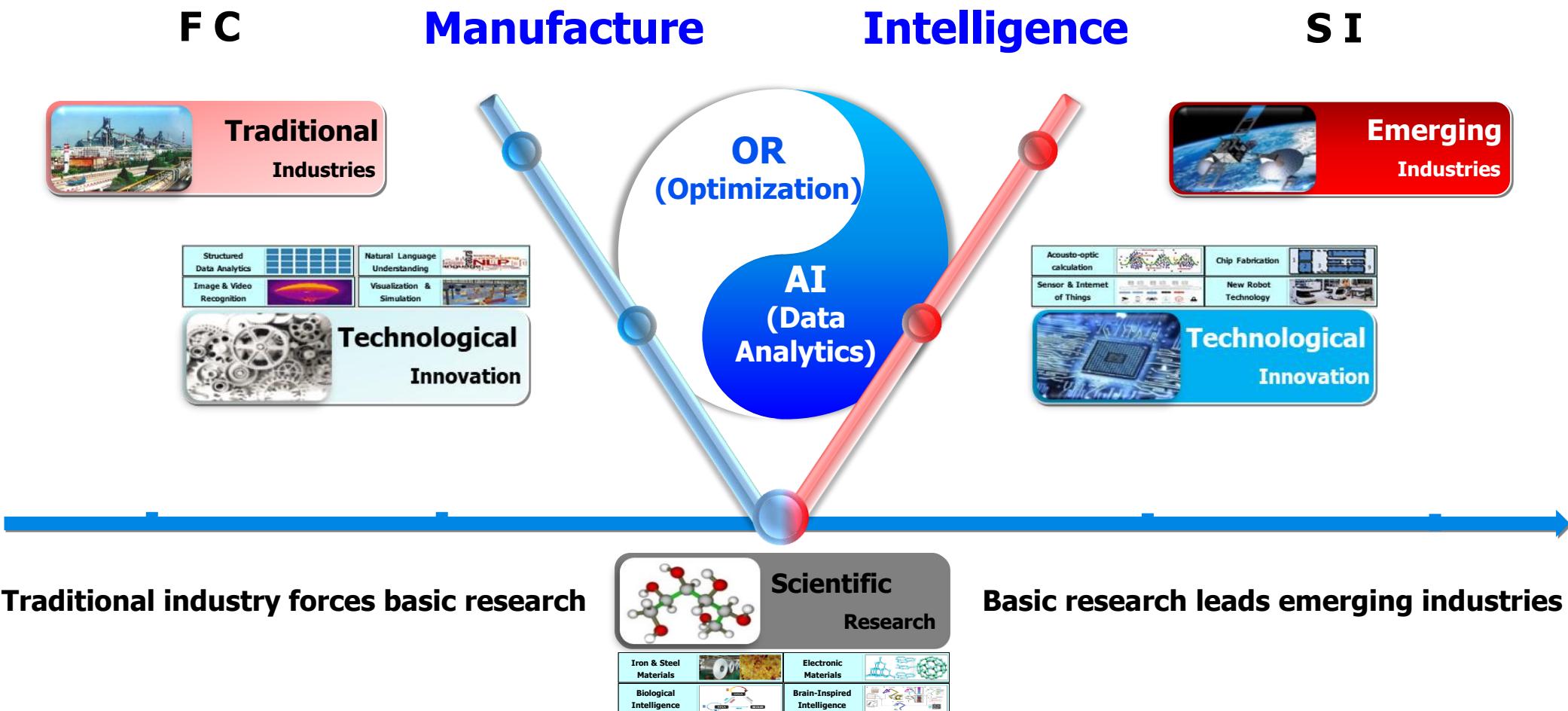
1. DAO-based PDDE System Technology (H)



Outline



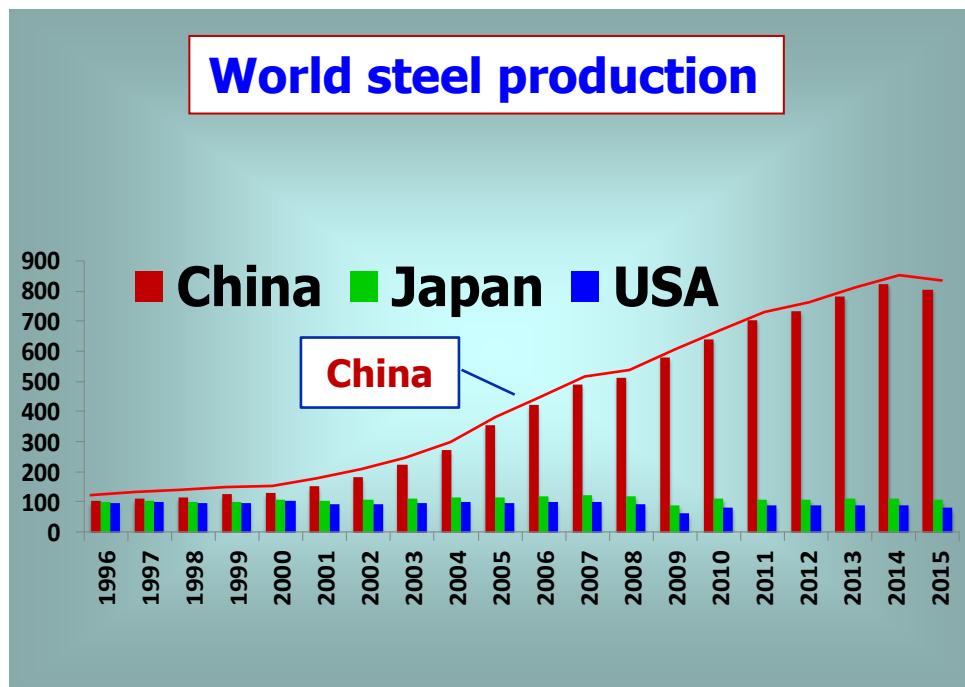
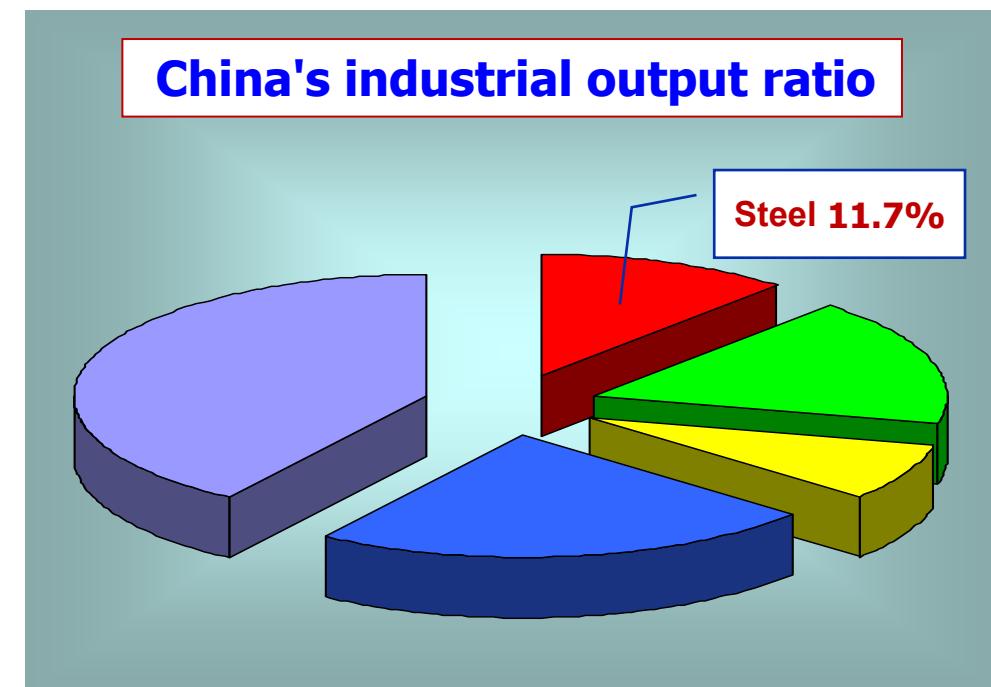
2. Data Analytics and Optimization for Material Science (V)



V (Valley) = Engineering + Technology + Science

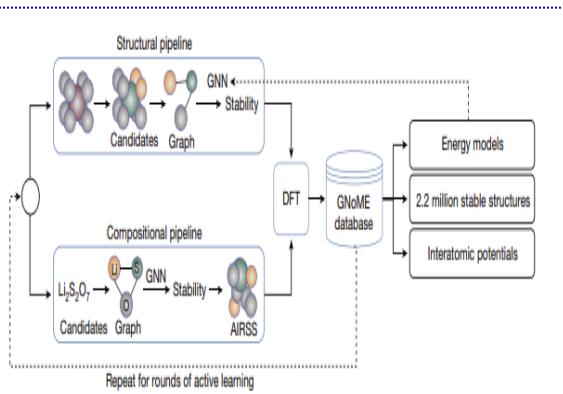
2. Data Analytics and Optimization for Material Science (V)

- ❖ China has been the largest steel producer in the world for the last twenty consecutive years.
- ❖ In 2024, China's steel output has reached about 1.005 billion tons, accounting for about 53.3% of the world's steel output.
- ❖ Steel industry has been one of the pillar industries in China's national economy.



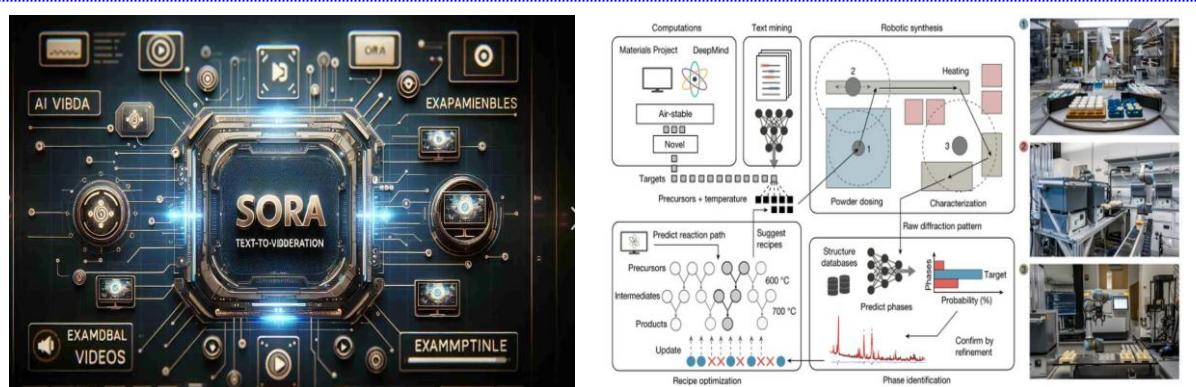
Material Discovery

- ❖ **Model Overview:** The GNoME model developed by the Google DeepMind team has achieved remarkable results in materials science.
- ❖ **Crystalline Structure Discovery:** Based on the large language model, it has found the number of crystalline structures over 45 times than history.
- ❖ **Stability Prediction Efficiency:** The discovery rate of material stability prediction has increased by 30% compared to previous studies.



Material Synthesis

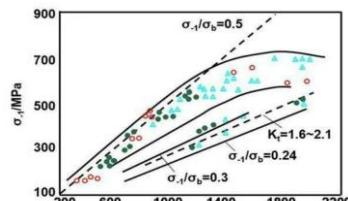
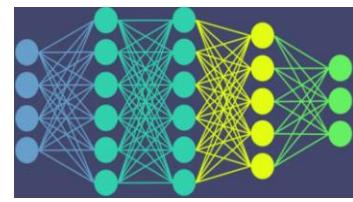
- ❖ **Platform Overview:** A-Lab is an autonomous platform designed to bridge the gap between computational material screening and experimental realization.
- ❖ **Experimental Capability:** A-Lab is able to decide for itself how to synthesize the target material, conducting 355 experiments in 17 days.
- ❖ **Synthesis Efficiency:** It successfully synthesized 41 of 58 compounds, which remarkably enhanced the synthesis efficiency.



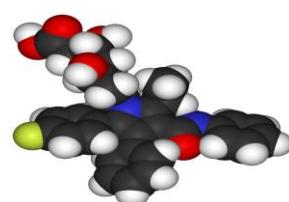
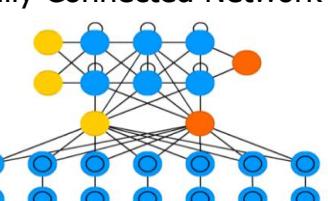
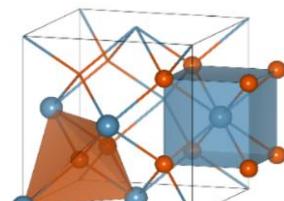
2. Data Analytics and Optimization for Material Science (V) – Steel Material

Material Design

- ❖ **Metallurgical equipment:** Topology-optimized steel design enhances metallurgical equipment performance and durability.
- ❖ **Logistics equipment:** Topology-driven lightweight steel enhances logistics equipment performance.
- ❖ **Energy equipment:** Steel material based on data-driven and mechanical model ensures energy equipment safety.

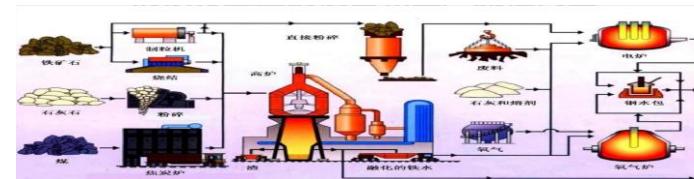


Fully Connected Network

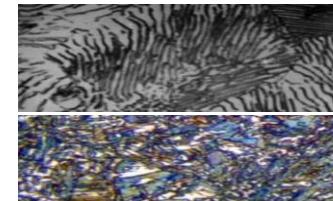


Process Design

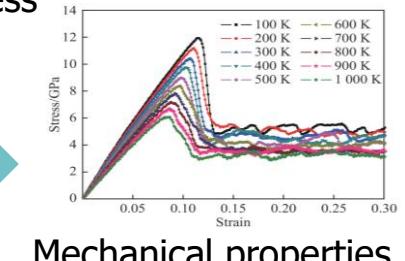
- ❖ **Process design:** Precise process control enables superior material performance and functionality.
- ❖ **Analytics model:** The material analytics model serves as the basis for process optimization. It is built using mechanism and data-driven model.
- ❖ **Dynamic optimization:** Model parameters are optimized by a dynamic multi-objective evolutionary algorithm.



Steelmaking process



Metallurgical organization



Mechanical properties

2. Data Analytics and Optimization for Material Science (V) – Steel Material

Steel Material Design and Optimization Software System

Si:0.2

Component search

Advanced Search

New material design

Performance prediction

Component

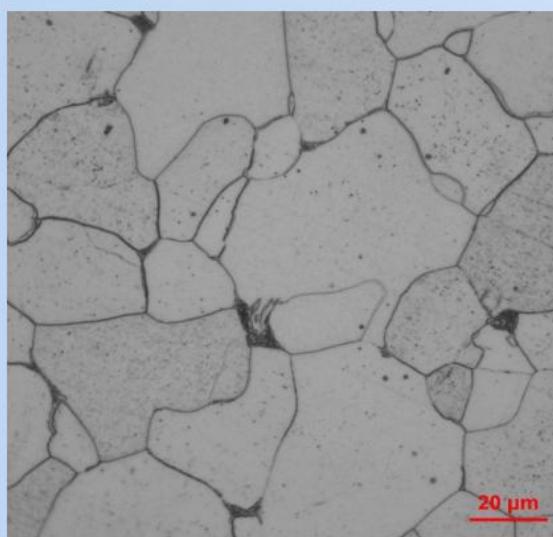
Brand	C/%	Si/%	Mn/%	P/%	S/%
X70	0.45-0.65	0.1-0.25	0.18-0.25	0-0	0-0.002
X60	0.06-0.12	0.15-0.4	1.2-1.6	0-0	0-0.02

Process

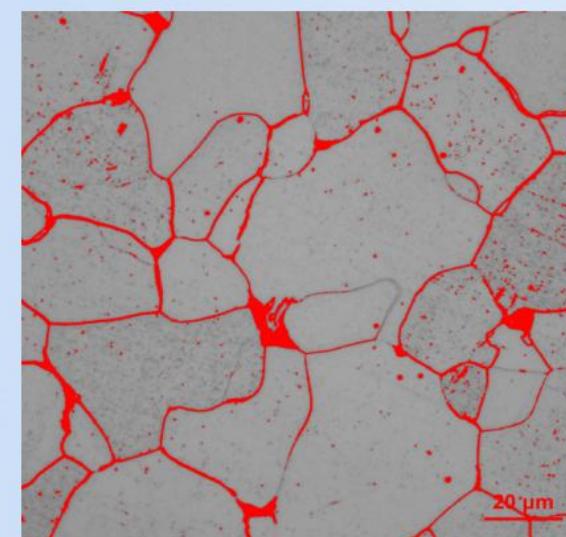
Brand	Furnace Time/...	Thickness/mm	Width/mm	Pouring ...
X70	190	12	857	1220±20
X60	200	12	857	1240±30

Performance

Yield Strength/Mpa	308.0
Tensile Strength/Mpa	450.0
Elongation/%	30.0
Impact Performance	—
Drop Weight Test Performance	—
Surface Decarburization Layer	—
Surface Roughness	—



Identify the original image

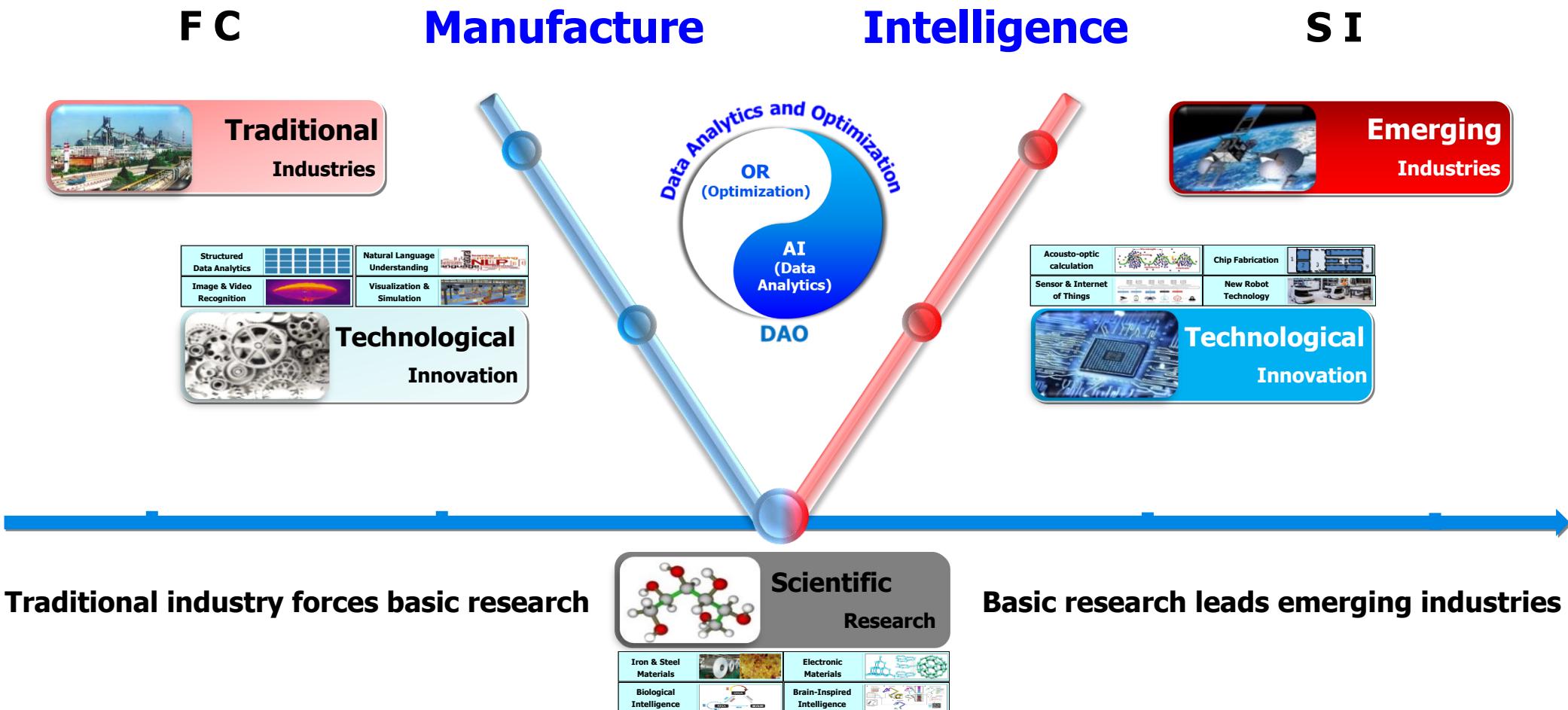


Crystal granularity: 4.5

Image segmentation of crystal grain

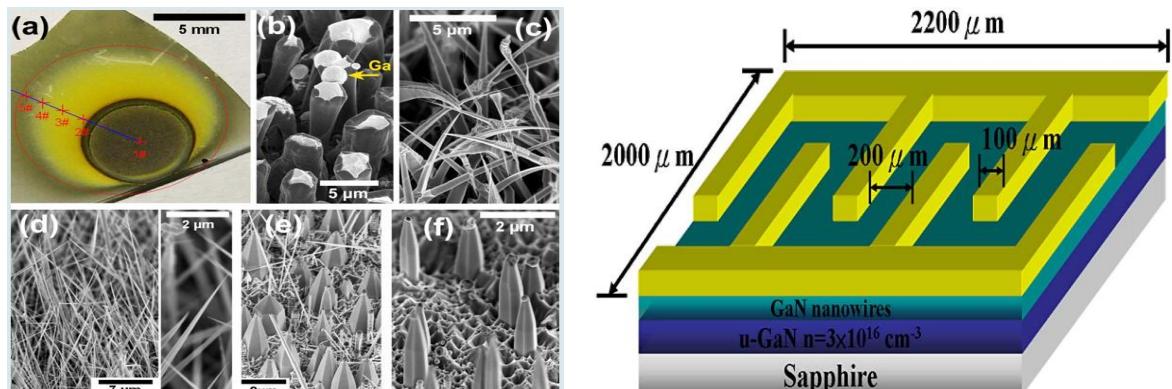
Metallographic organization	Ferrite & Precipitates
Crystal granularity	4.5
Component segregation	—
Triangle	—
Inclusion A	—
Inclusion B	—
Inclusion C	—
Inclusion D	—

2. Data Analytics and Optimization for Material Science (V)



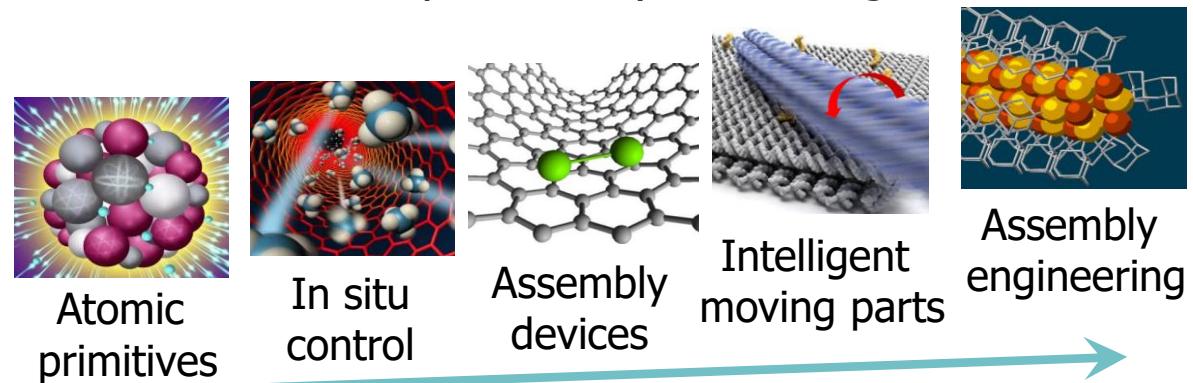
Material Design

- ❖ **Sensing, storage, communication and computing:** new semiconductor materials realize high-precision control and optimization of industrial process.
- ❖ **New acousto-optic materials, energy and environmental materials:** design new materials to optimize energy conversion efficiency.
- ❖ **New machines:** development of smart and bionic materials for new robot body structures and smart chips for new robot brains.



Atom Manufacturing

- ❖ **In situ sensing:** a multimodal in situ observation platform achieves the interfacial atomic coordination evolution and defect nucleation mechanisms.
- ❖ **Precise control:** atomic manufacturing requires the ultimate delicate manipulation technology to achieve the precise manipulation of atoms.
- ❖ **Operation optimization:** optimizing the atomic deposition path improves the precision of atomic fabrication manipulation by combining with DAO .



Information Material Design and Optimization Software System

Reset

Component design

Performance Prediction

Structural Modeling

Crystal Model Setting

Element Selection

Ga
O
Si

Element Doping

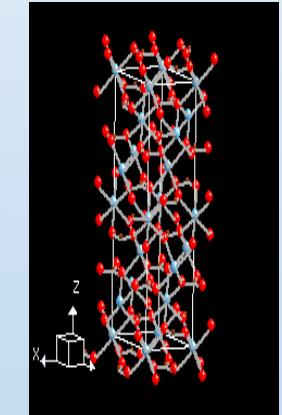
Si
P
N
Cl

Doping Number

1	
1	
2	
1	
1	

Structural Modeling

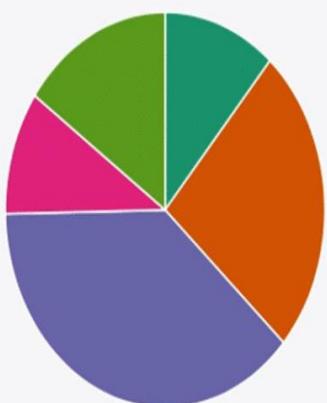
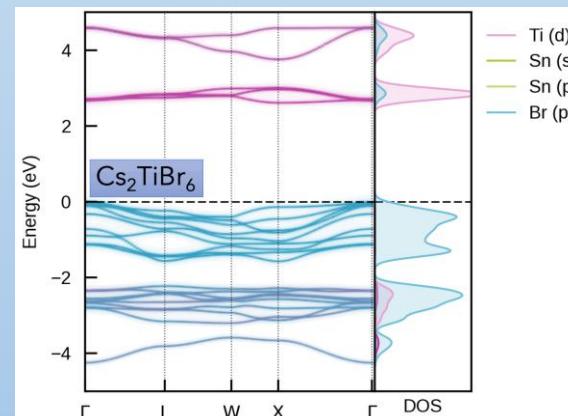
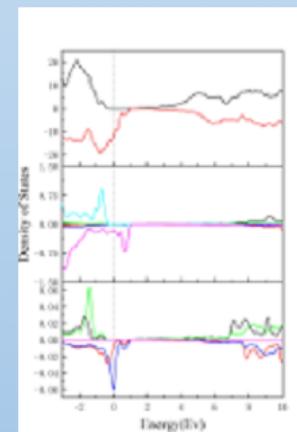
Site	Element	Wyckoff Symbol	X	Y	Z
Ga1	Ga	4i	m	0.0904	0
O1	O	4i	m	0.1674	0
O2	O	4i	m	0.1721	0
Ga2	Ga	4i	m	0.3414	0
O3	O	4i	m	0.5043	0



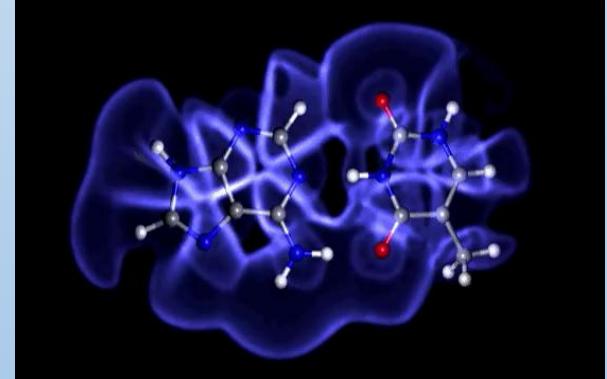
Performance Prediction

Data 1

Data 2



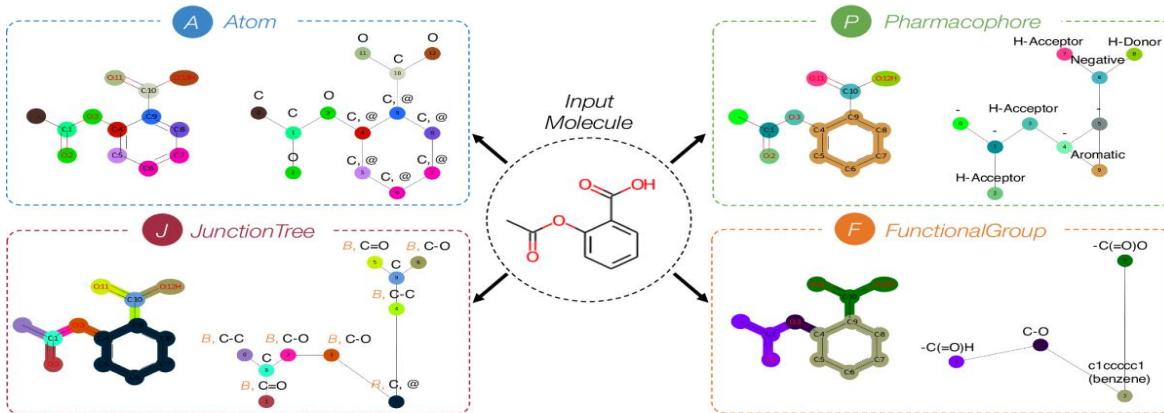
Optimization Results



2. Data Analytics and Optimization for Carbon Science (V)

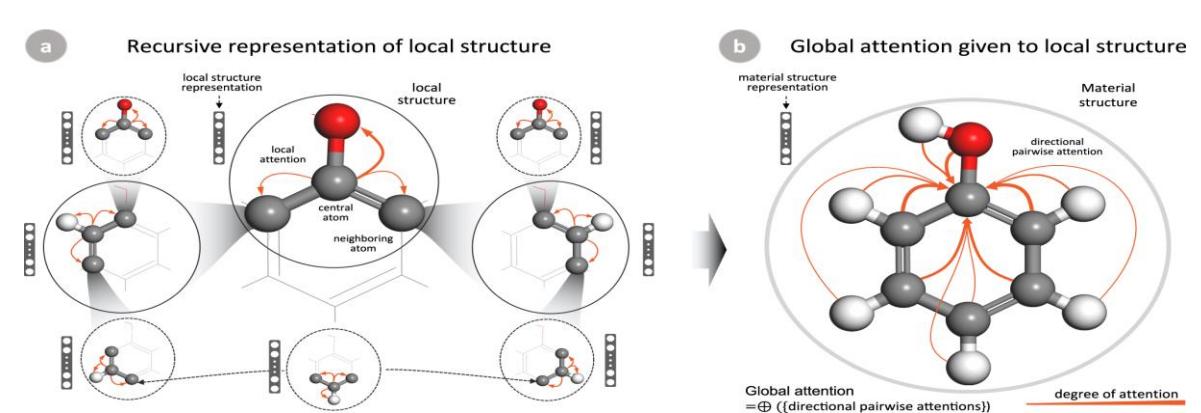
Chemistry Graph

- ❖ **Molecular Graph:** providing a framework for predicting the macroscopic properties of complex carbon systems from their atomic connectivity.
- ❖ **Carbon Genetic:** the connection relationship between atoms determines the properties and behavior of carbon molecules.
- ❖ **Performance Prediction:** understanding structure-property relationship for carbon-based substances like CO_2 , CH_4 , and chemicals.

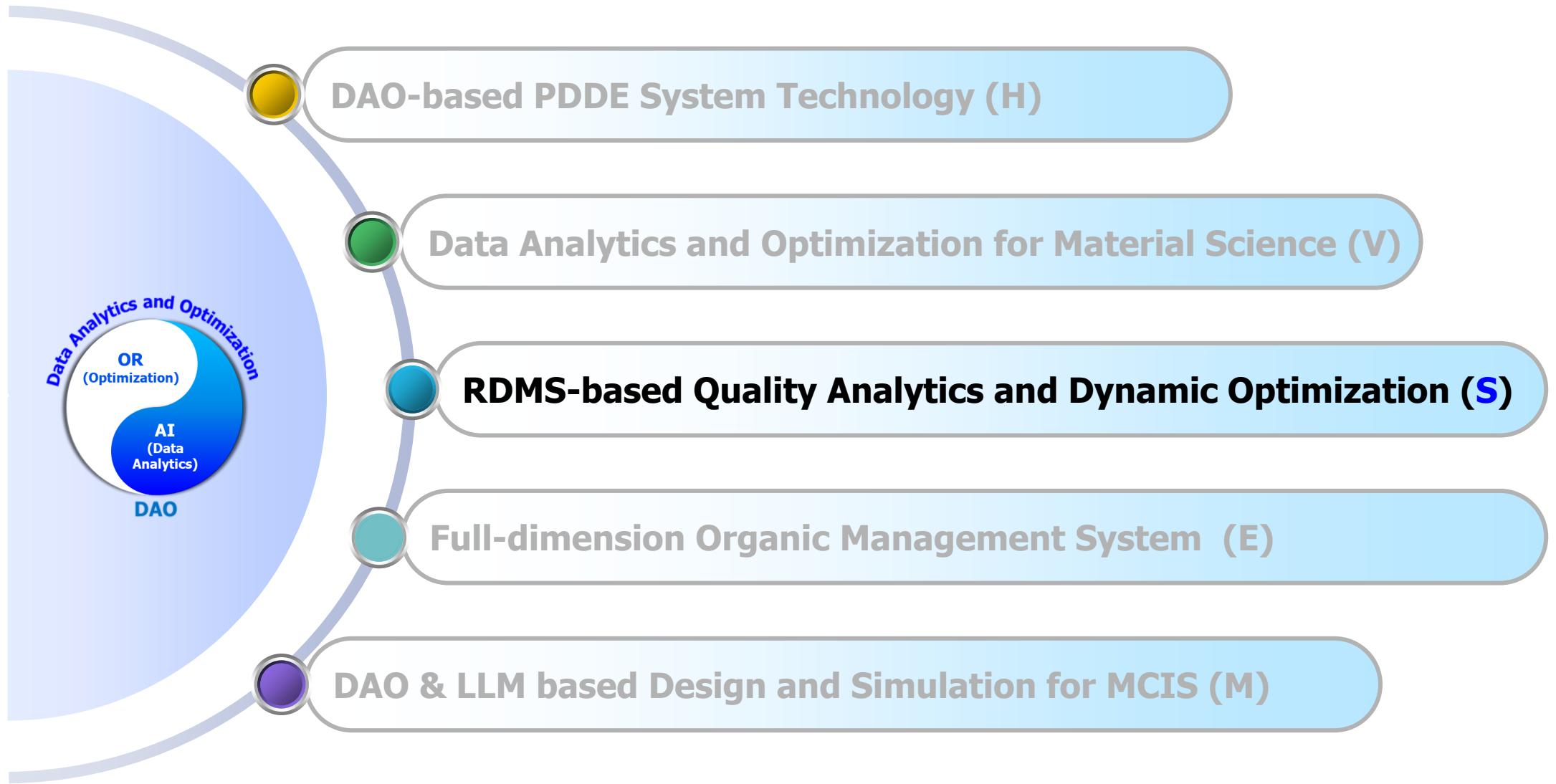


Stereochemical Topology

- ❖ **3D Chemistry Topology:** The chemical properties of carbon-based substances arise from the combined effect of its structure and topology, especially the topology of graphs embedded in three-dimensional space.
- ❖ **Synthesis Optimization:** facilitating the synthesis of carbon chemicals, the preparation of carbon materials, and the design of carbon capture and conversion materials.



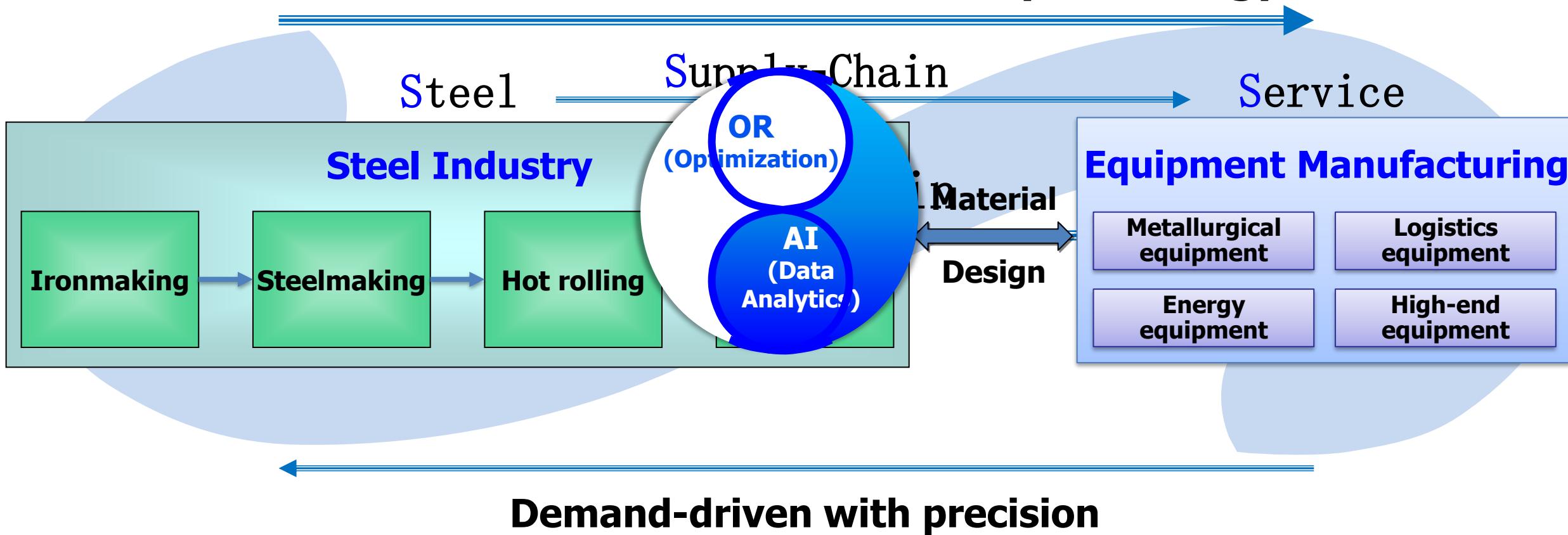
Outline



3. RDMS-based Quality Analytics and Dynamic Optimization (S)

RDMS: Raw Material - Device - Machine - Systems

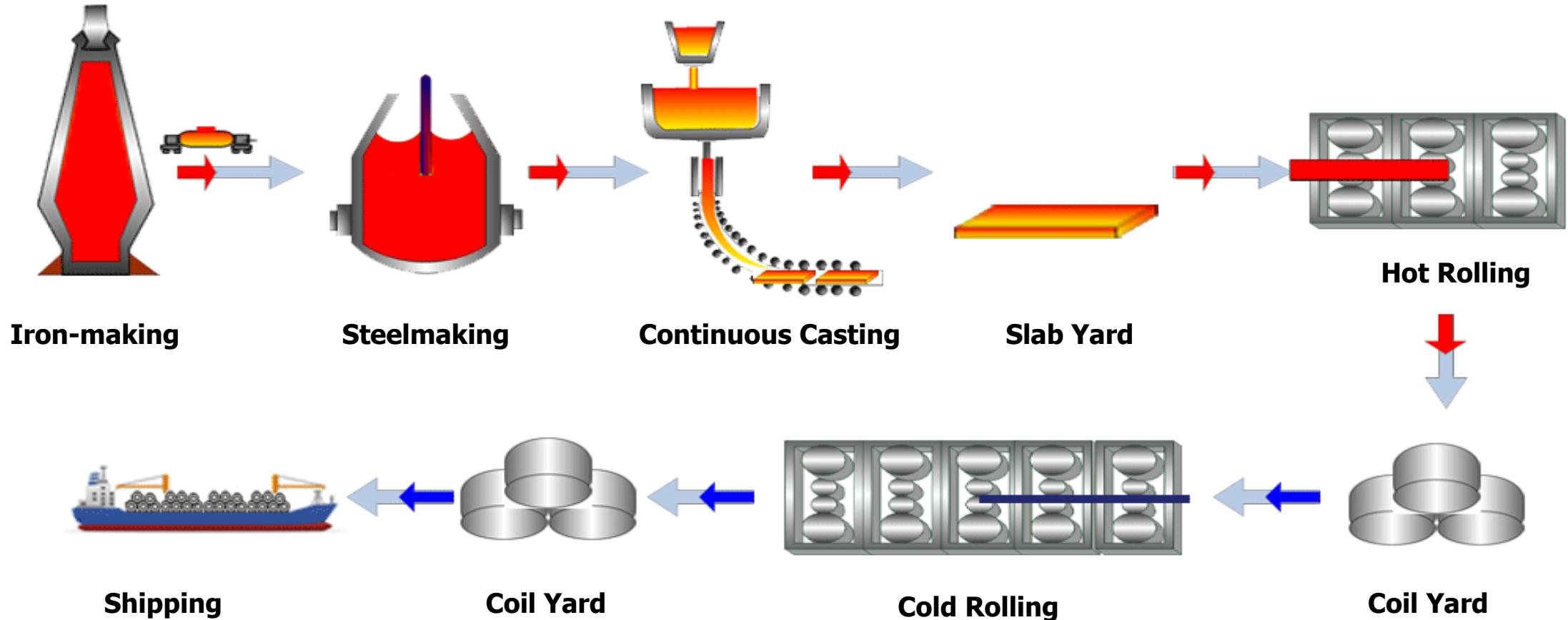
Pushed forward from the source by technology



3. RDMS-based Quality Analytics and Dynamic Optimization (S) — PDDE

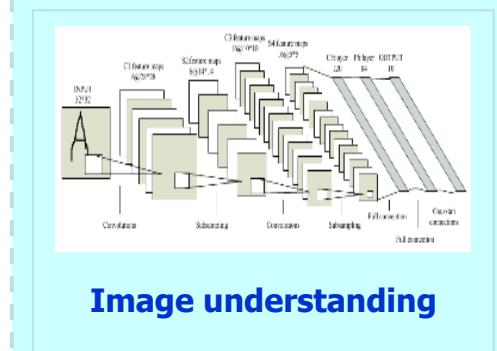
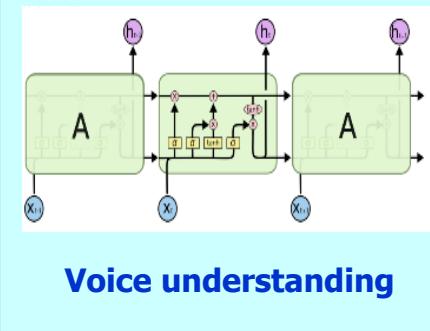
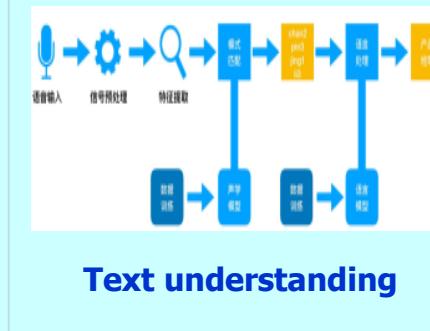
3. RDMS-based Quality Analytics and Dynamic Optimization (S)

Features: continuous and discrete production, huge devices, high-temperature operations, massive consumption of energy and resource

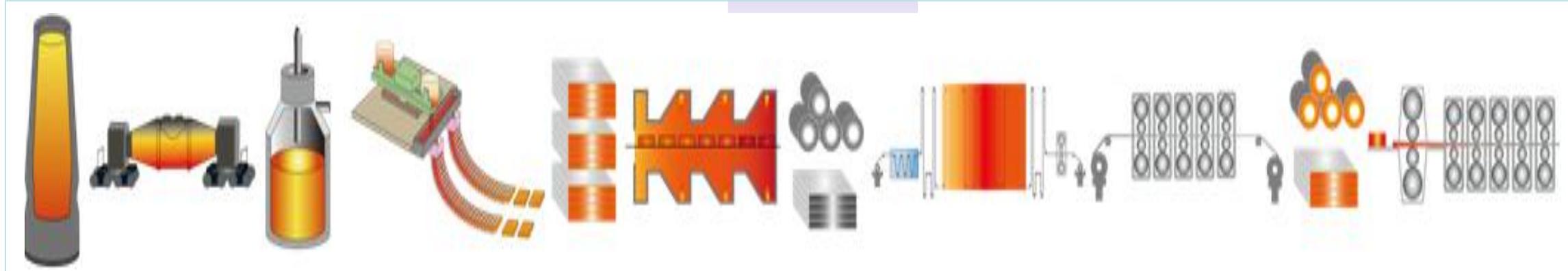


3. RDMS-based Quality Analytics and Dynamic Optimization (S) – Quality Perception

Fusion of Multi-dimensional Intelligent Technologies



Industrial intelligence



3. RDMS-based Quality Analytics and Dynamic Optimization (S) – Quality Discovery

Case 1: Iron Quality Prediction

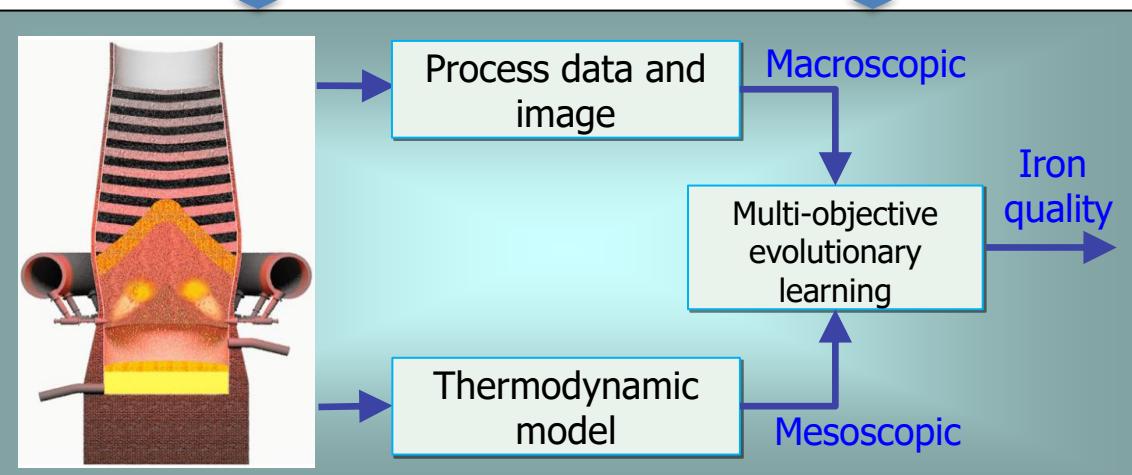
Multi-objective Evolutionary Ensemble Learning

Fusion of thermodynamic model (meso) and process data (macro)

Sub-learner based on fusion of meso and macro data

Multi-objective evolutionary algorithm

Evolving the structure and parameters of ensemble model



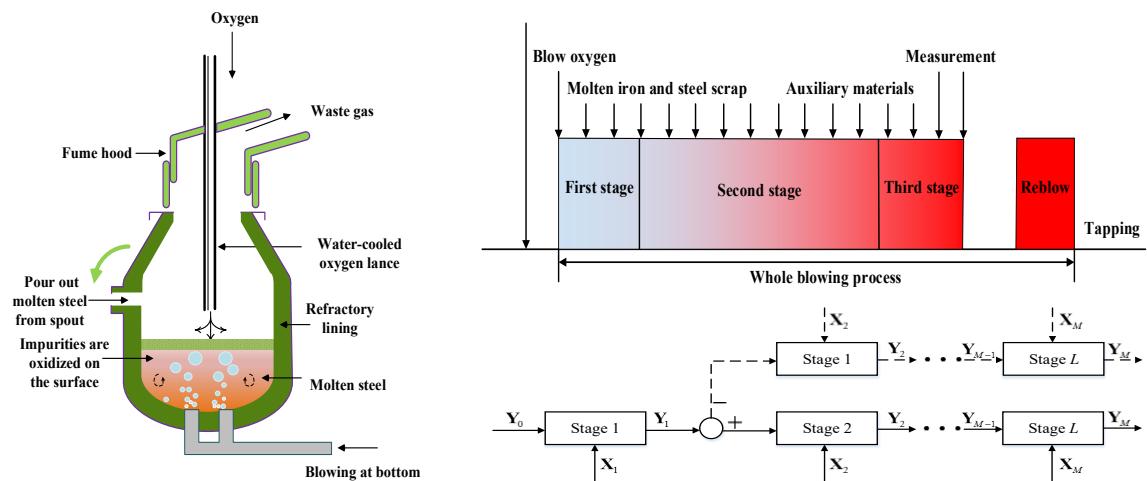
Case 2: Steel-making Dynamic Prediction

Challenges

- Continuous prediction requirement
- Unstable performance of single model
- Dynamic adjustment requirement

Dynamic analytics method

- Multi-stage modeling strategy
- Dynamic model with feedback
- Hybrid kernel function
- Differential evolution algorithm



X. Wang, T. Hu, and L. Tang. A multiobjective evolutionary nonlinear ensemble learning *IEEE Transactions on Neural Networks and Learning Systems*, 2022, 33(5): 2080-2093.

C. Liu, L. Tang, J. Liu, Z. Tang. A dynamic analytics method based on multistage modeling for a BOF steelmaking process. *IEEE Transactions on Automation Science and Engineering*, 2019, 16(3): 1097-1109.

X. Wang, Y. Wang, L. Tang, Q. Zhang. Multiobjective ensemble learning with multiscale data for product quality prediction in iron and steel industry. *IEEE Transactions on Evolutionary Computation*, 2024, 28(4): 1099-1113.

3. RDMS-based Quality Analytics and Dynamic Optimization (S) – Quality Discovery

Case 3: Temp. Prediction of Reheat Furnace

Features of heating process

- Dynamic and nonlinear
- Difficult to obtain mechanism model
- Obvious prediction error with mechanism model

Analytics method

- LS-SVM is used to compensate for the prediction deviation of the slab temperature
- Significantly improve the model prediction accuracy

Deviation Compensation

LS-SVM
Model

Mechanism Model

Mixed Model

Case 4: Strip Quality Analytics

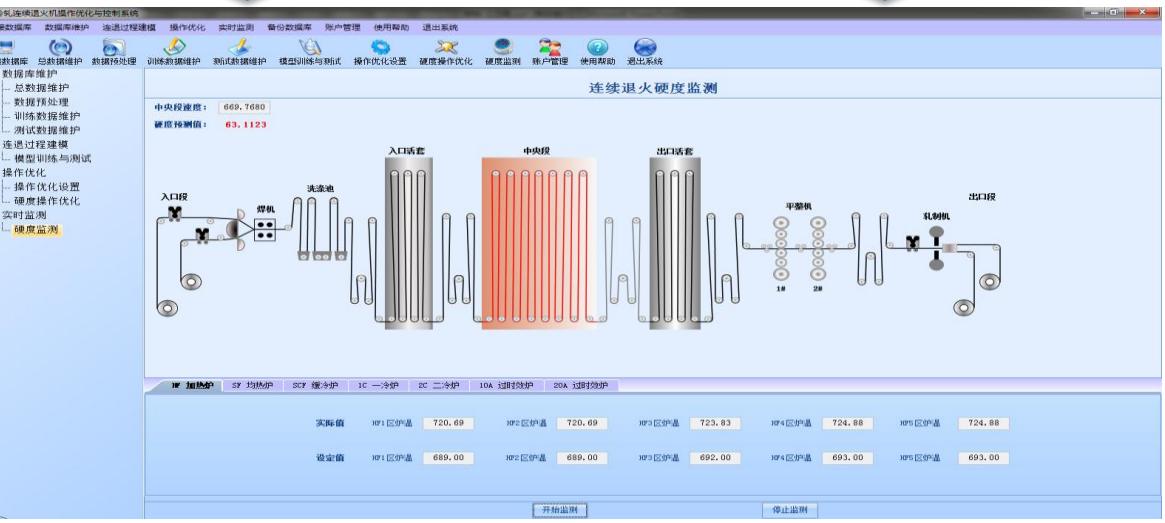
Multi-objective Ensemble Learning

Least square support vector
machine (LSSVM)

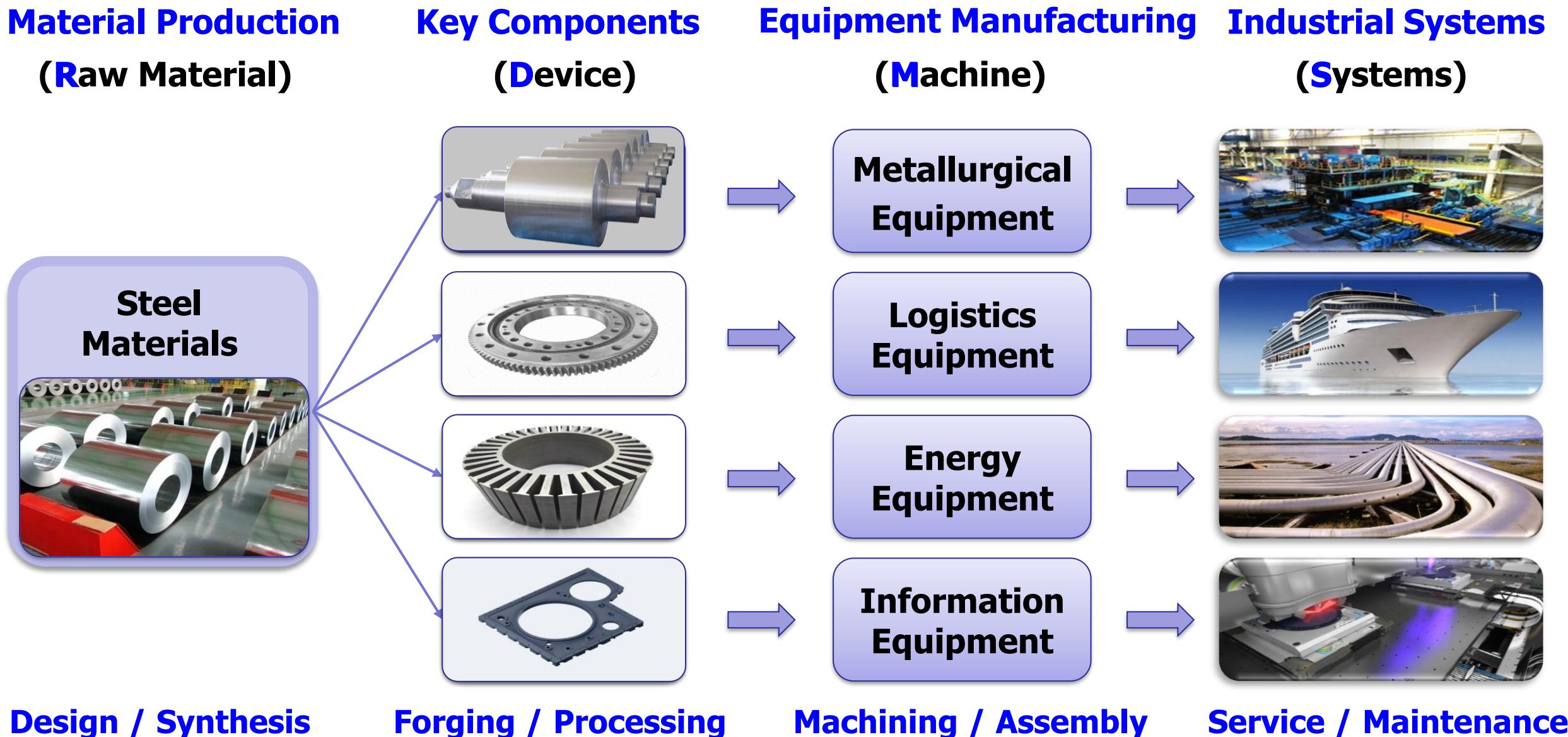
Sub-learner in the ensemble
learning

Multi-objective evolutionary
algorithm

Evolving the ensemble
learning model



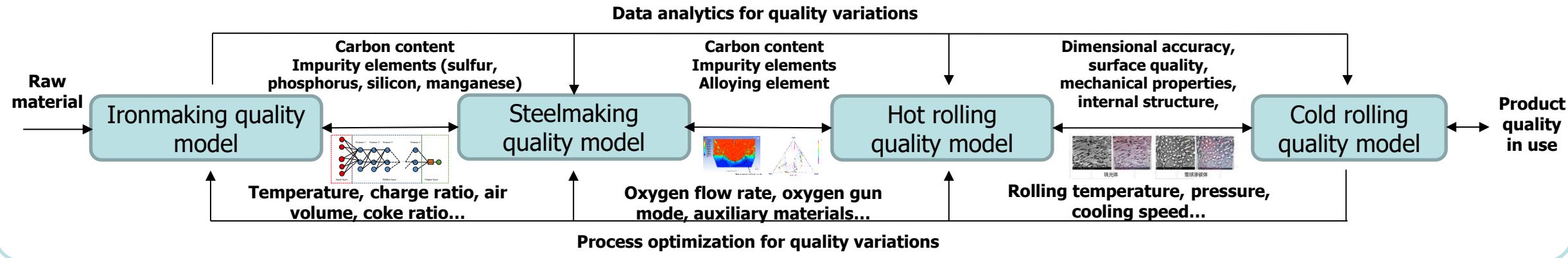
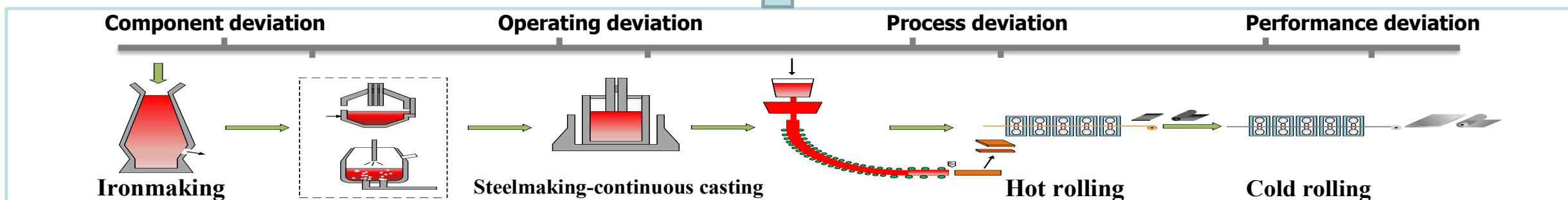
3. RDMS-based Quality Analytics and Dynamic Optimization (S) — Product Quality Design



3. RDMS-based Quality Analytics and Dynamic Optimization (S)—Process Design and Optimization

- Steel production is a highly complex and multi-stage process, and the interaction and quality transfer between the various links directly affect the quality of the final product. Therefore, the quality control of each process cannot be carried out in isolation, but should be coordinated in the whole process, which can effectively identify and eliminate accumulated quality deviations and ensure that the final product meets the design requirements.

Multi-stage quality analytics and optimization for whole process of steel production

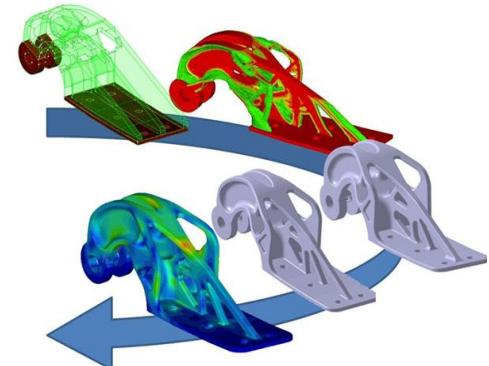
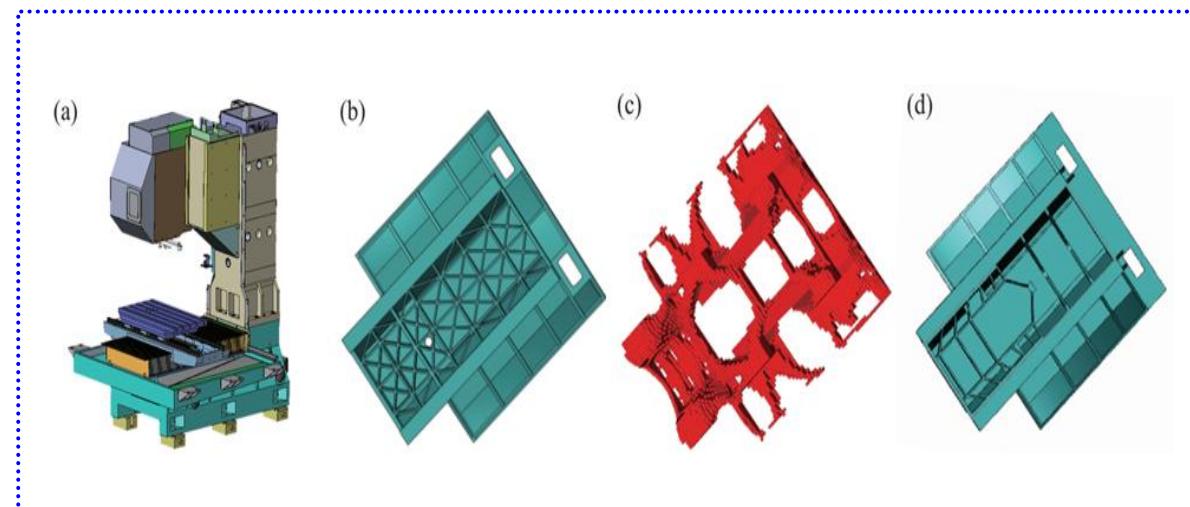


3. RDMS-based Quality Analytics and Dynamic Optimization (S) — PDDE

Decision-making
Execution
Discovery
Perception

3. RDMS-based Quality Analytics and Dynamic Optimization (S) — Product Quality Design

- ❖ **Topology optimization:** optimization design method for equipment manufacturing products, integrating structural mechanics and optimization methods. Through optimizing spatial distribution of materials, structural configuration and component size, it can obtain the optimal structural form from multiple structural design schemes to achieve **weight reduction, cost reduction and performance improvement** for aviation, automotive and other products.
- ❖ **Quality design:** topology optimization for design important structural parts in equipment, such as machine base, beam of forging machine, tooling structures for aircraft etc.



3. RDMS-based Quality Analytics and Dynamic Optimization (S)—Process Design and Optimization

Process Optimization in Manufacturing

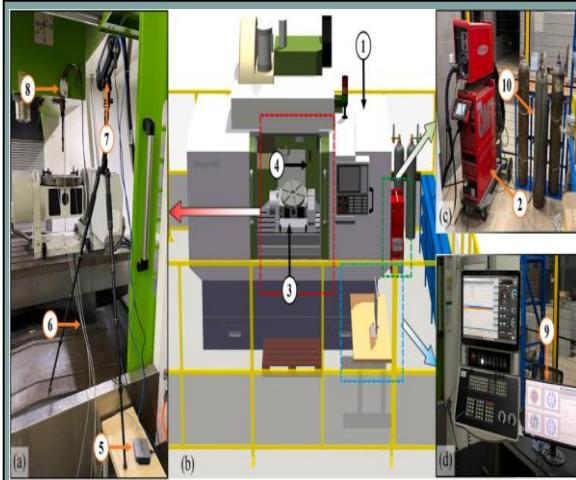
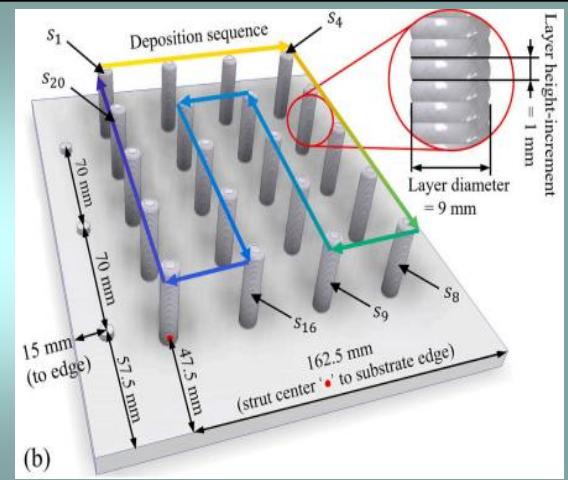
Multi-objective process optimization

Multi-objective optimization for product quality

Improve product performance, life, reliability, maintainability, and safety

Operation parameters for process optimization

Adjust machining speed, pressure, angle, depth, and shears



In-process Quality Improvement (IPQI)

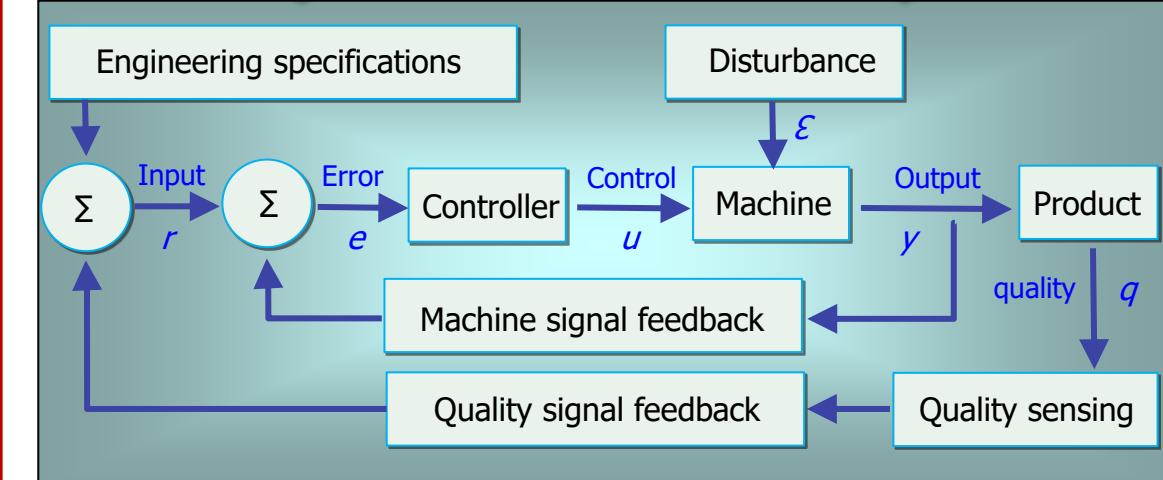
IPQI-enhanced automation

Engineering-driven data fusion for quality improvement

Advanced statistical and machine learning methods and optimization methods

IPQI methodologies for assembly, machining, and forming

Integrate causation-based models and optimization algorithms

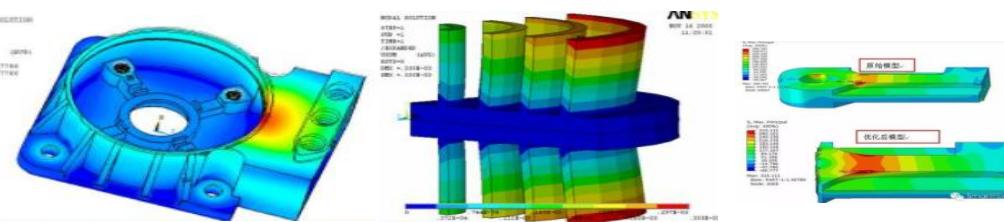


3. RDMS-based Quality Analytics and Dynamic Optimization (S) – Quality Discovery

❖ Fusion modeling for multistage manufacturing process

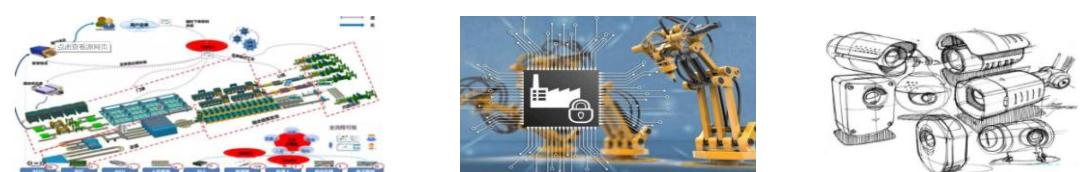
Product Design

- Quality representation
- Critical features
- Tolerance design



Process Design

- Relationship between workpiece and tool
- Machine layout
- Process sequences



Linear mechanism model

$$\text{Datum Error} \quad \mathbf{x}_k \rightarrow A_{k-1} \mathbf{x}_{k-1}$$

$$\text{Fixture Error} \quad \mathbf{x}_k \rightarrow B_{k-1} \mathbf{u}_k$$

$$\text{Machine Error} \quad \mathbf{x}_k = A_{k-1} \mathbf{x}_{k-1} + B_{k-1} \mathbf{u}_k + \mathbf{w}_k$$

$$\text{Overall Error} \quad \mathbf{y}_k = C_k \mathbf{x}_k + \mathbf{v}_k$$

Nonlinear data model

$$\mathbf{x}_k \rightarrow g_1(\mathbf{x}_{k-1})$$

$$\mathbf{x}_k \rightarrow g_2(\mathbf{u}_k)$$

$$\mathbf{x}_k = g_1(\mathbf{x}_{k-1}) + g_2(\mathbf{u}_k) + \mathbf{w}_k$$

$$\mathbf{y}_k = g_3(\mathbf{x}_k) + \mathbf{v}_k$$

3. RDMS-based Quality Analytics and Dynamic Optimization (S) – Quality Perception

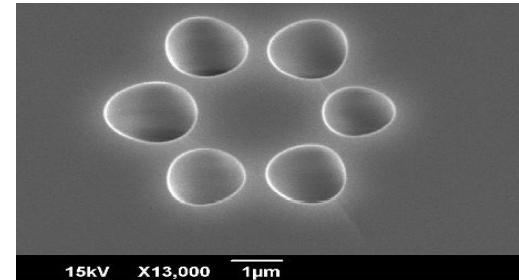
Quality Perception

❖ In view of complex conditions and key links in the equipment manufacturing process, industrial intelligent chips and embedded systems are developed, special micro-nano sensors/intelligent photoelectric sensors with high sensitivity are developed, and sensors are interconnected with equipment through the Internet of Things, so as to achieve highly reliable deep intelligent perception of key process parameters that are difficult to measure in the equipment manufacturing process.

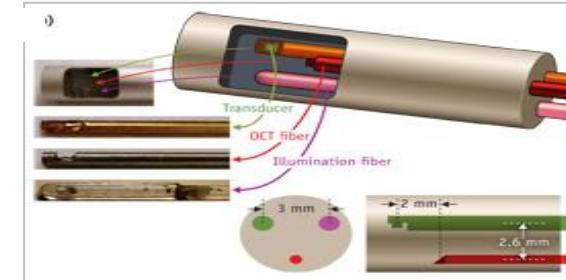
❖ Types of fault perception in equipment manufacturing process:

1. Wear fault, i.e., the equipment wear degree
2. Structural faults, e.g., cracks, wear, corrosion, imbalance
3. Parametric faults, e.g., fluid vortex, resonance, overheating, improper fit tightness
4. Failure of poor operation and maintenance

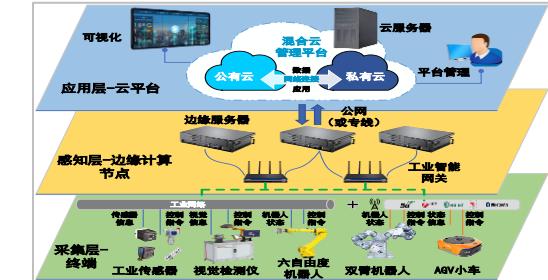
Equipment manufacturing process



TLWMN six-hole microstructure fiber



New photoelectric sensor



Equipment manufacturing IoT

3. RDMS-based Quality Analytics and Dynamic Optimization (S)

D

Decision-making: Through topology and multi-objective optimization, optimize the topology structure and performance of structural components of equipment to realize weight and cost reduction, and performance enhancement of aircraft, automotive and other products.

E

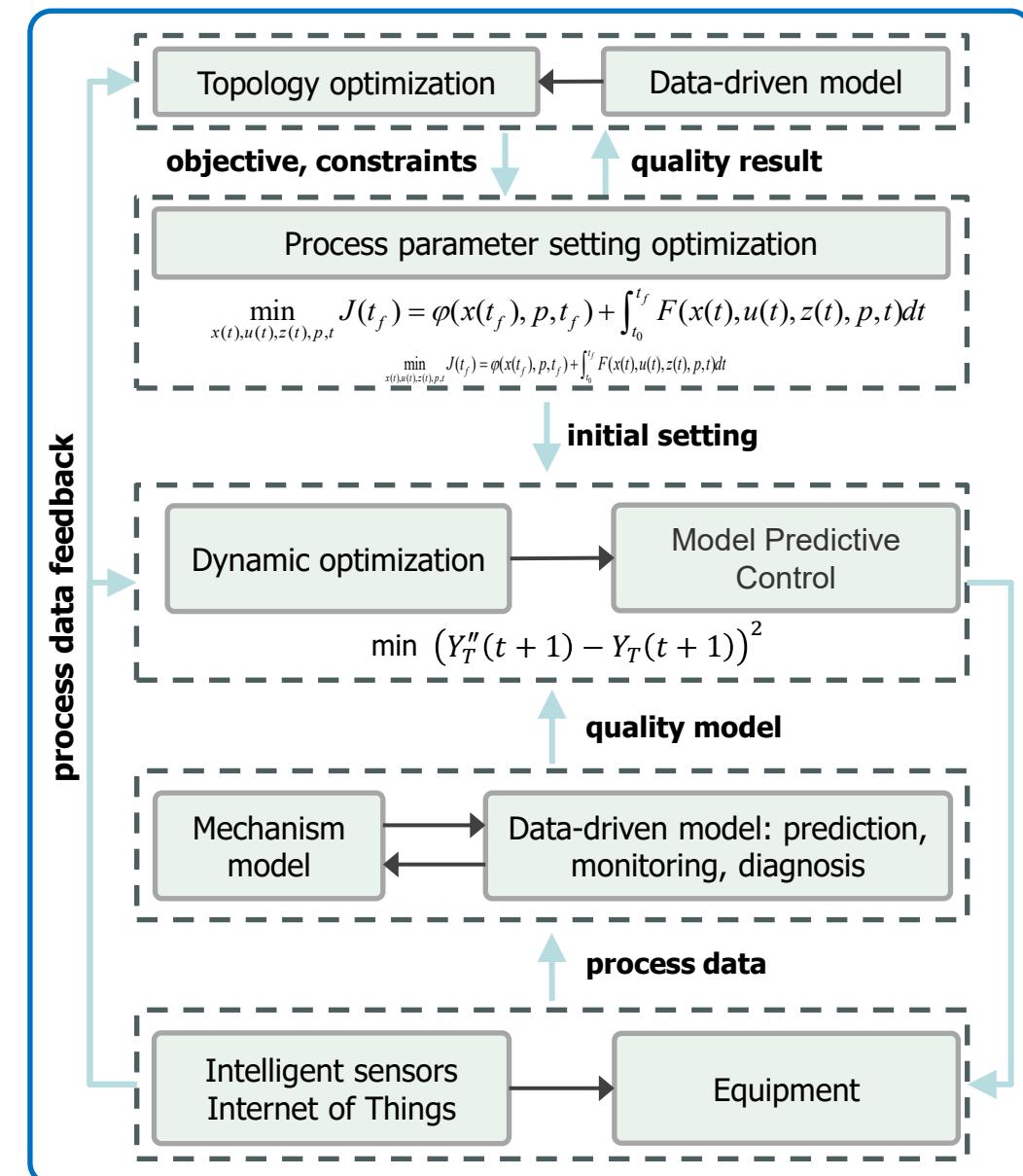
Execution: Based on the quality discovery models, the dynamic operation optimization of the production process is carried out with evolutionary algorithms to dynamically get the best parameter settings to achieve the expected product quality requirements of equipment.

D

Discovery: Through multi-source data fusion for manufacturing process, it provides common models for product quality prediction, and monitoring; together with multi-objective evolutionary learning methods, it achieves consistency and stability of product quality.

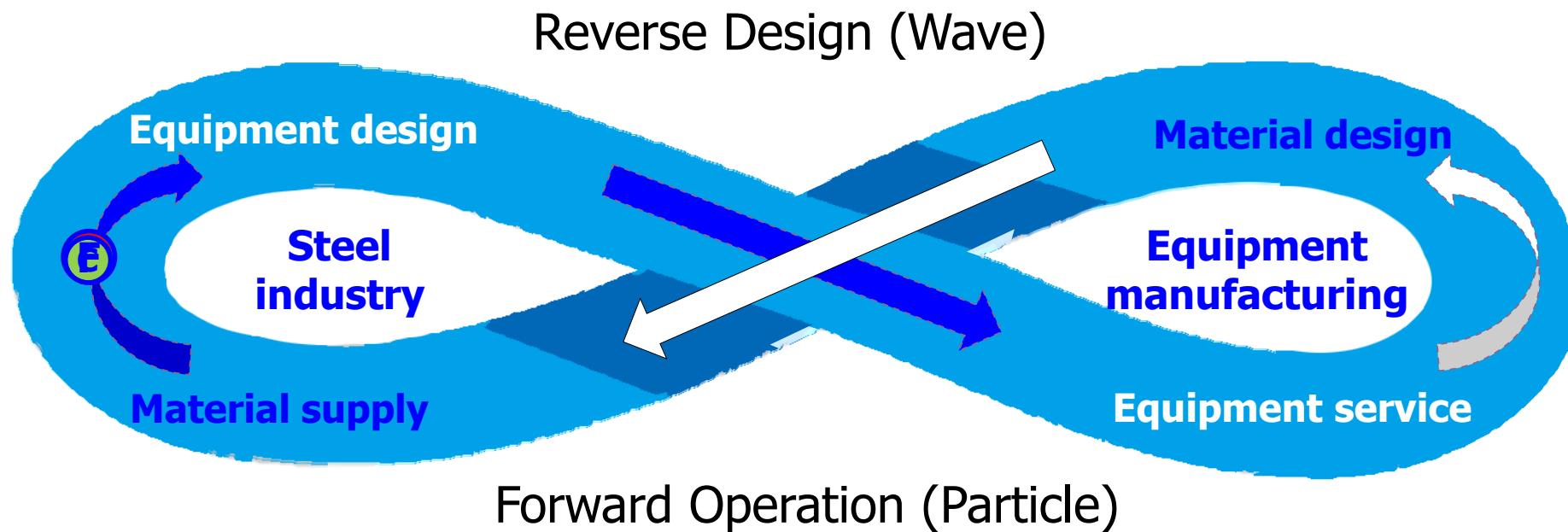
P

Perception: Through the development of high sensitivity special intelligent sensors and taking use of the Internet of Things, it realizes the intelligent and reliable measurement of the key process parameters in the equipment manufacturing process.



3. RDMS-based Quality Analytics and Dynamic Optimization (S)

Wave-Particle Duality Quantum Holographic Quality Management (S)



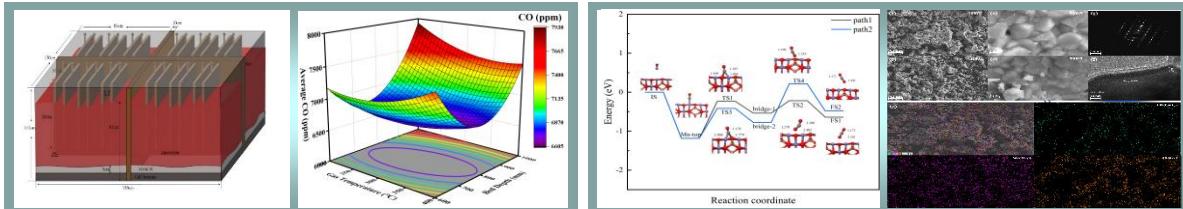
F : Fe Ring (F Ring)

C : Carbon Ring (C Ring)

3. RDMS-based Quality Analytics and Dynamic Optimization (S) – Carbon Reduction

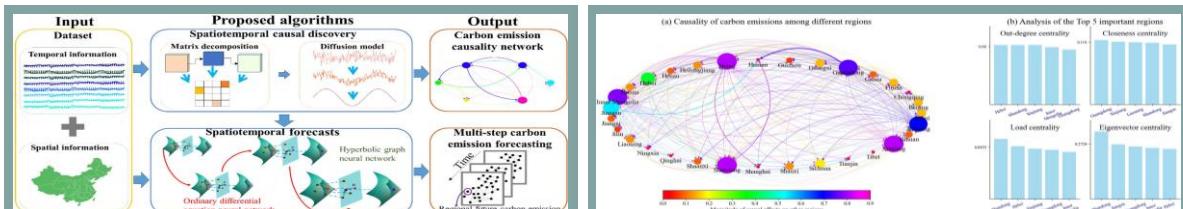
Process Design Optimization (D)

- Optimize the ingredient sourcing to achieve low/zero-carbon manufacturing. Optimal design the production process and develop advanced technologies for energy conservation and carbon reduction.



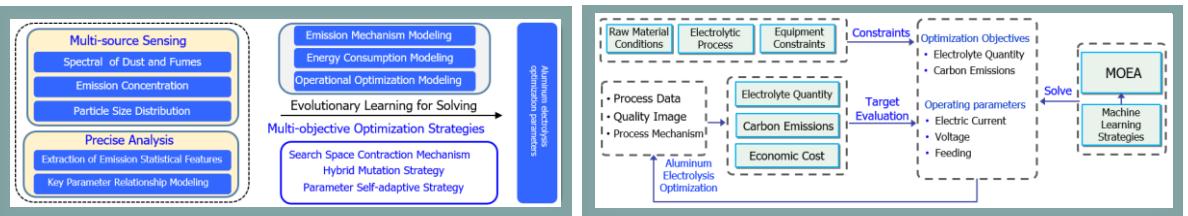
Discovery of Carbon Emission Patterns (D)

- The mechanism and data fusion method is proposed to analyze multi-source data patterns, identify carbon emission hotspots and anomalies, enabling full-process, multi-dimensional emission discovery.



Real-time Process Optimization (E)

- Develop carbon emissions models considering key process parameters. Propose dynamic multi-objective optimization of operating parameters considering dynamic changes in energy consumption and carbon emissions.

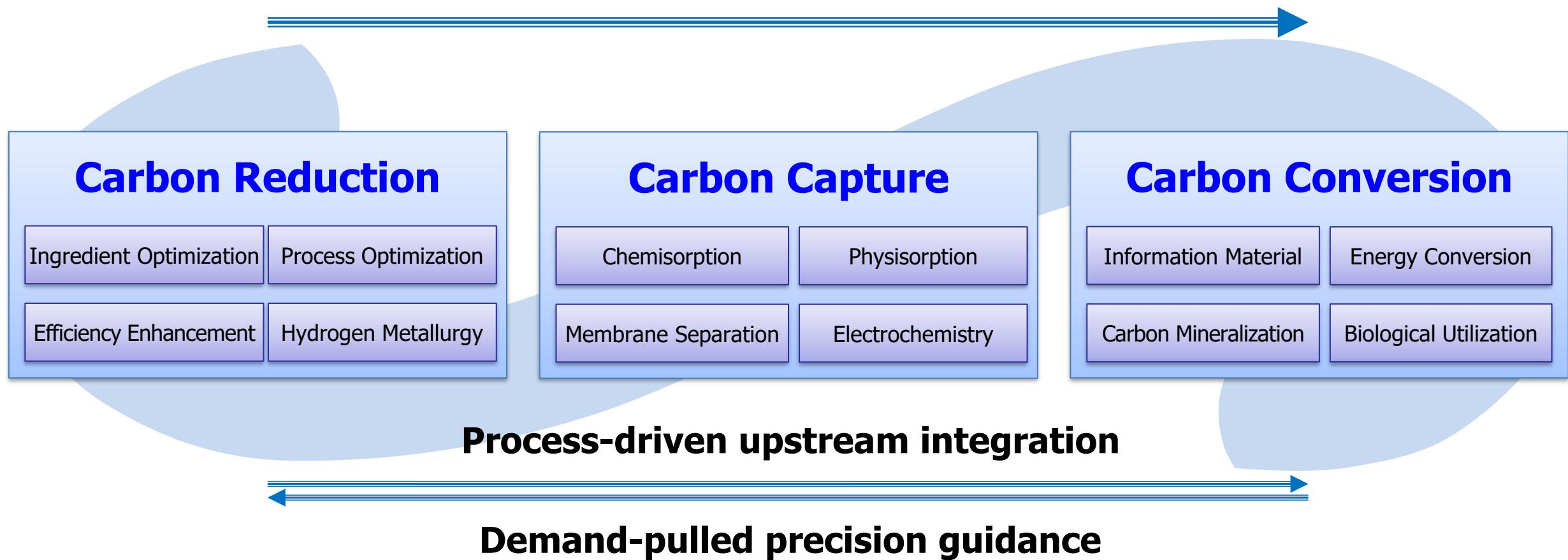


Perception of Carbon Footprint (P)

- System perception technology uses structured data, text, voice, images, and sensors for accurate, real-time, stable acquisition and monitoring of carbon emission data across various sources and processes.

3. RDMS-based Quality Analytics and Dynamic Optimization (S) – Carbon Reduction

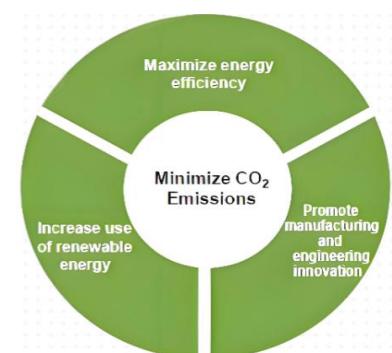
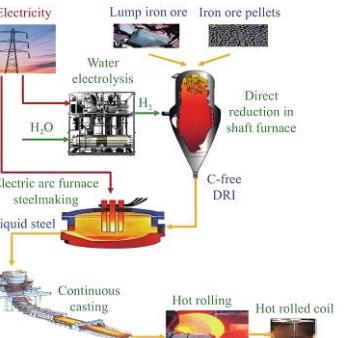
The value chain is shifting from low-end to high-end



3. RDMS-based Quality Analytics and Dynamic Optimization (S) – Carbon Reduction

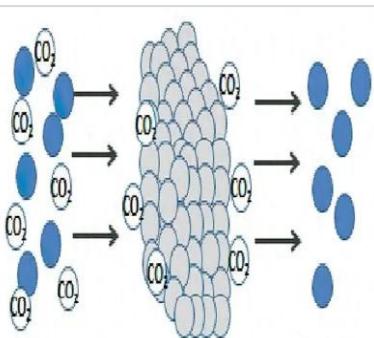
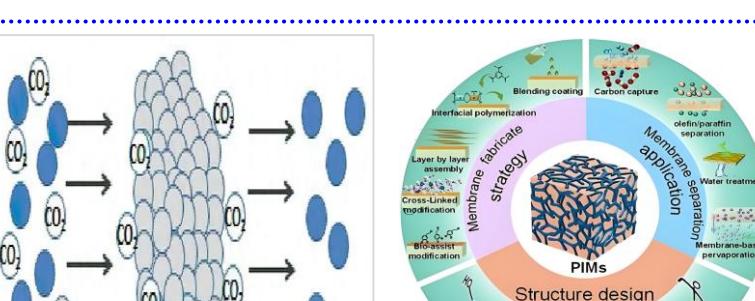
Carbon Reduction

- ❖ Extreme energy efficiency: energy saving and improving energy utilization efficiency.
- ❖ Resource recycling: expanding the scale of waste recycling and reduce resource consumption.
- ❖ Carbon substitution: accelerating the using of low-carbon energy, such as, hydrogen metallurgy.



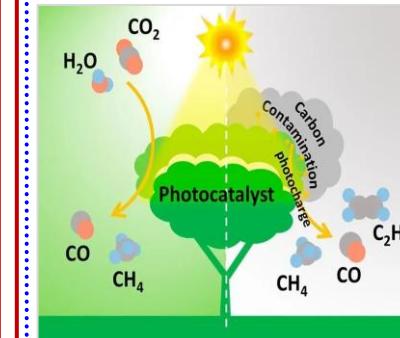
Carbon Capture

- ❖ Physical adsorption: using MOFs, activated carbon, molecular sieve materials to capture CO₂.
- ❖ Chemical absorption: using materials such as ammonia and calcium oxide to absorb CO₂.
- ❖ Membrane separation: using selective polymer membranes, to separate CO₂.

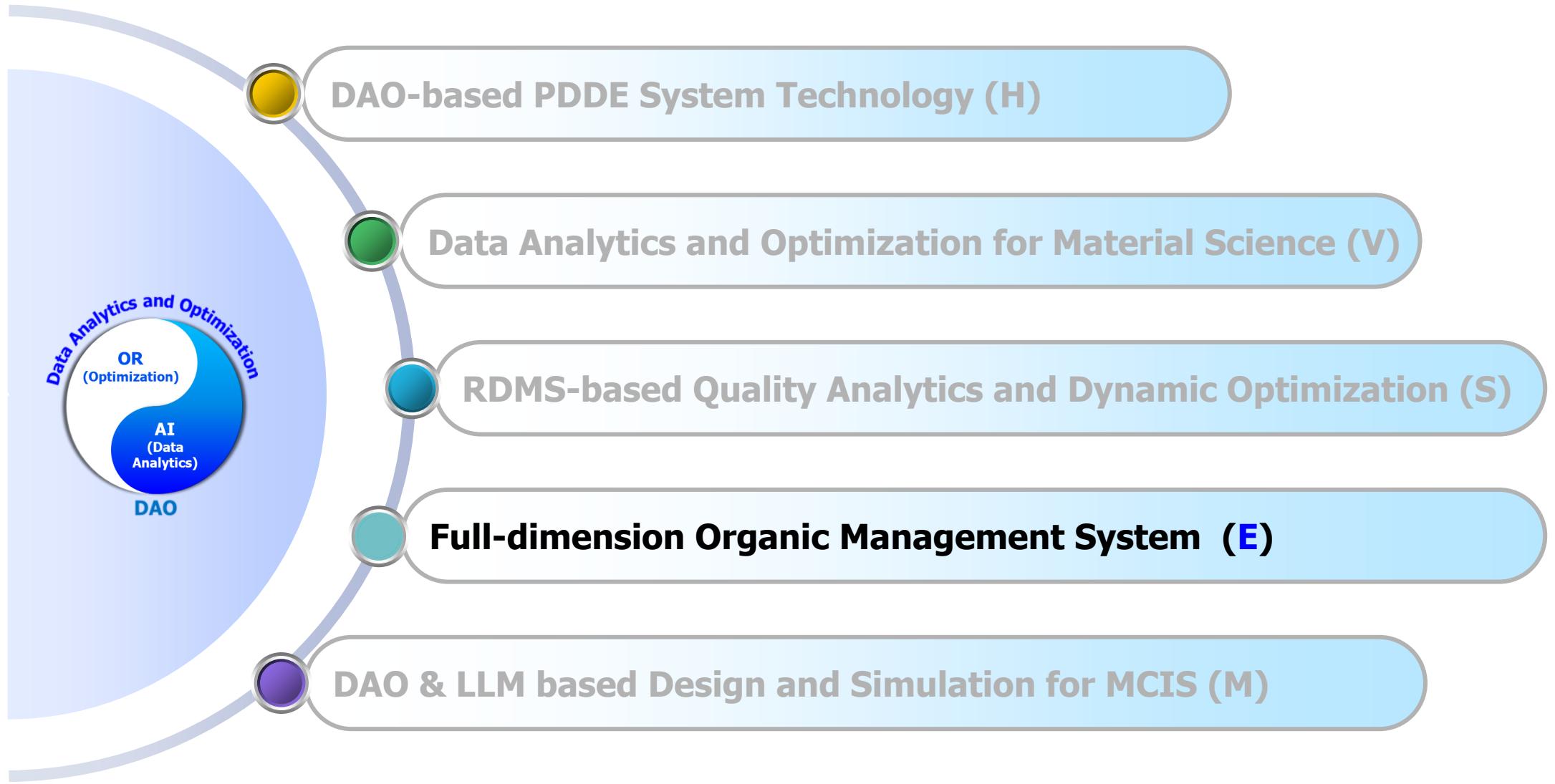


Carbon Conversion

- ❖ Energy conversion: Photocatalytic and electrocatalytic technologies enable the conversion of CO₂ into energy carriers such as syngas, methanol, and jet fuel.
- ❖ Carbon material preparation: converting CO₂ into key materials like diamond semiconductors for electronics manufacturing.

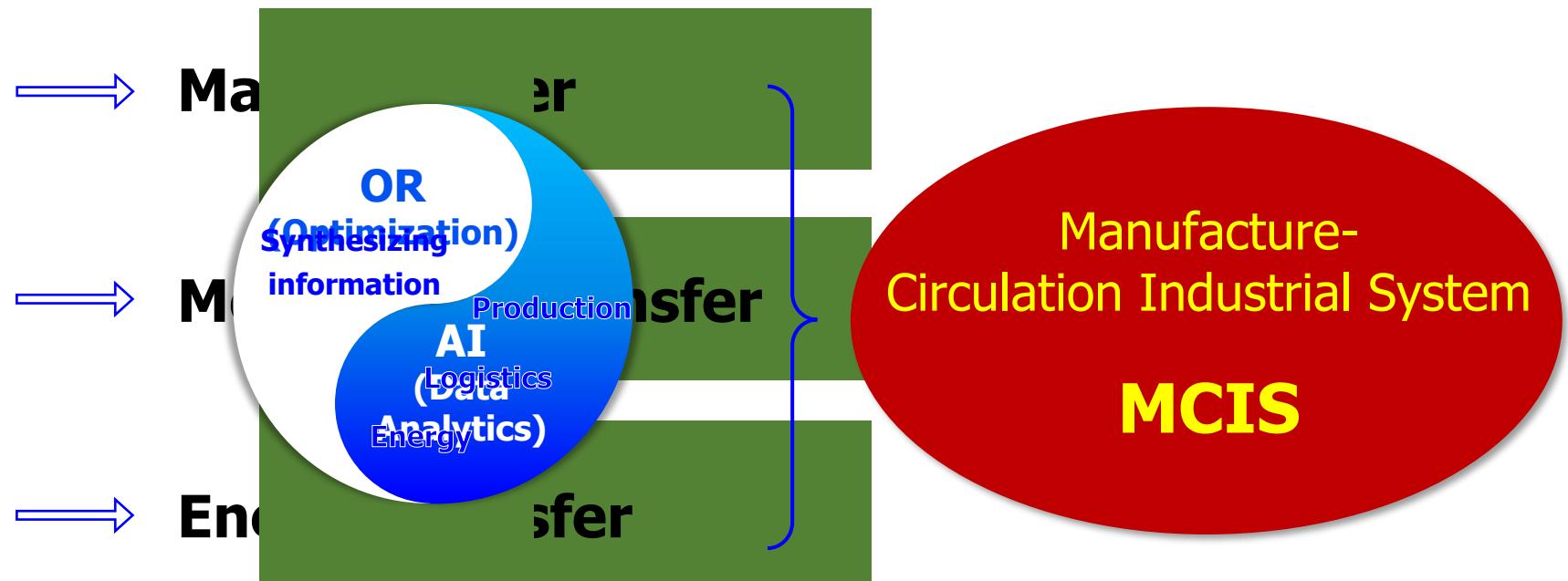


Outline



4. Full-dimension Organic Management System (E)

Manufacture-Circulation Industrial System (ECO-System, abbreviated as E)



$$E \text{ (ECO-System)} = \text{Production} + \text{Logistics} + \text{Energy} + \text{Information}$$

4. Full-dimension Organic Management System (E)

Challenges Faced by Steel Industry

High
Resource
Consumption

High
CO₂ Emission

High
Energy
Consumption

High Inventory

Production

Logistics

Energy

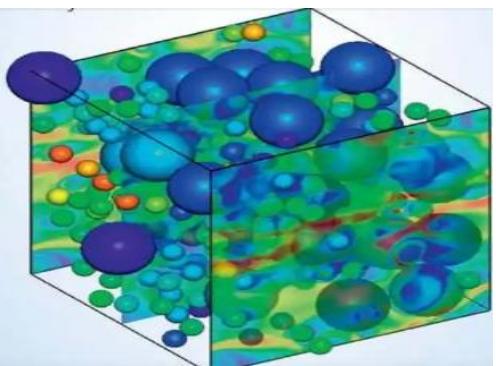
Data

4. Full-dimension Organic Management System (E)

➤ New Characteristics

- Complex physical and chemical processes with multiphase production
- Large variety and low volume products, as well as large equipment
- Complicated logistics structure, as well as break down type production structure

Complicated Production Process

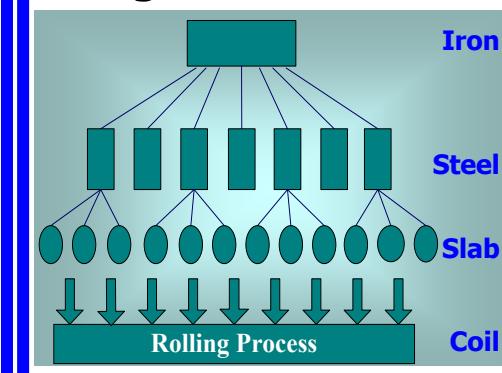


Large Variety and Low Volume



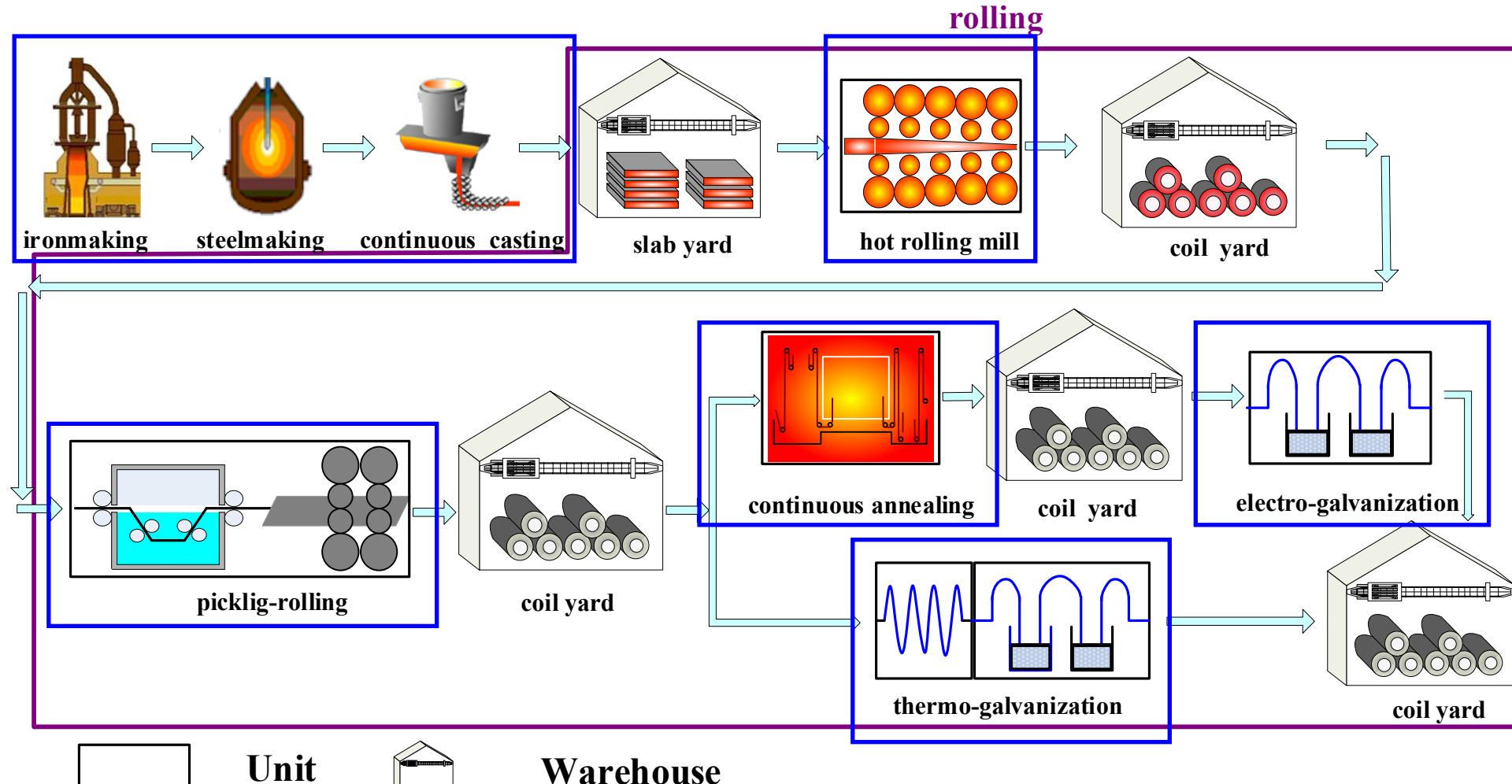
Huge Chemical Equipment

Complicated Logistics Structure



4. Full-dimension Organic Management System (E)

Steel Production

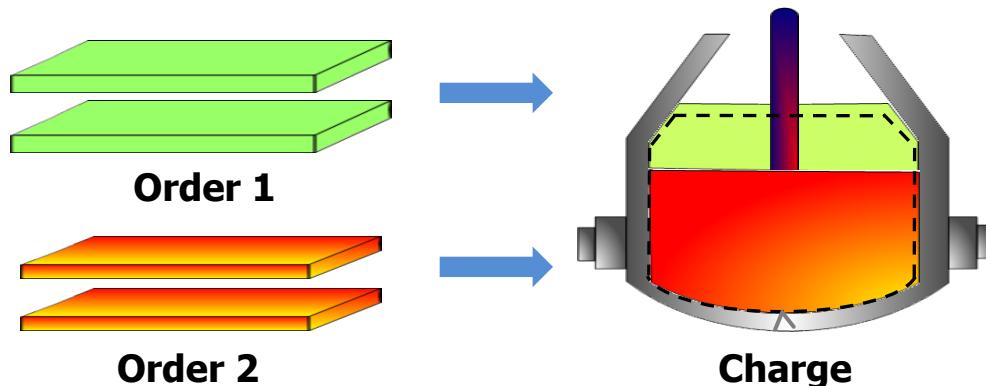


Production: Iron-making/Steelmaking/Hot Rolling/Cold Rolling

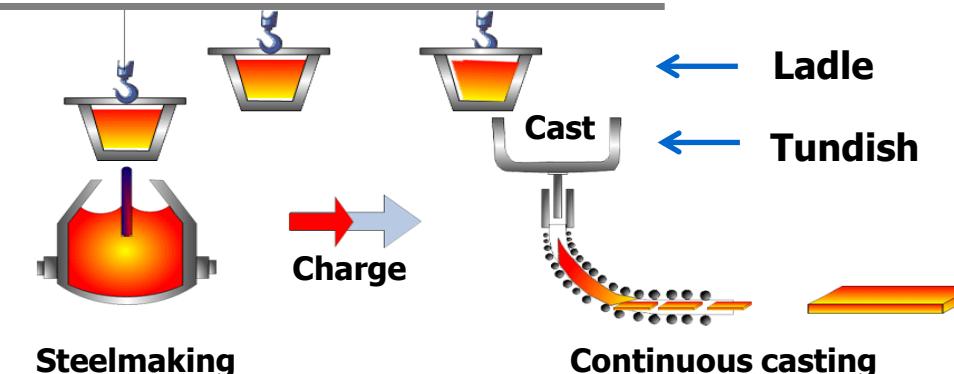
4. Full-dimension Organic Management System (E)

Production Scheduling

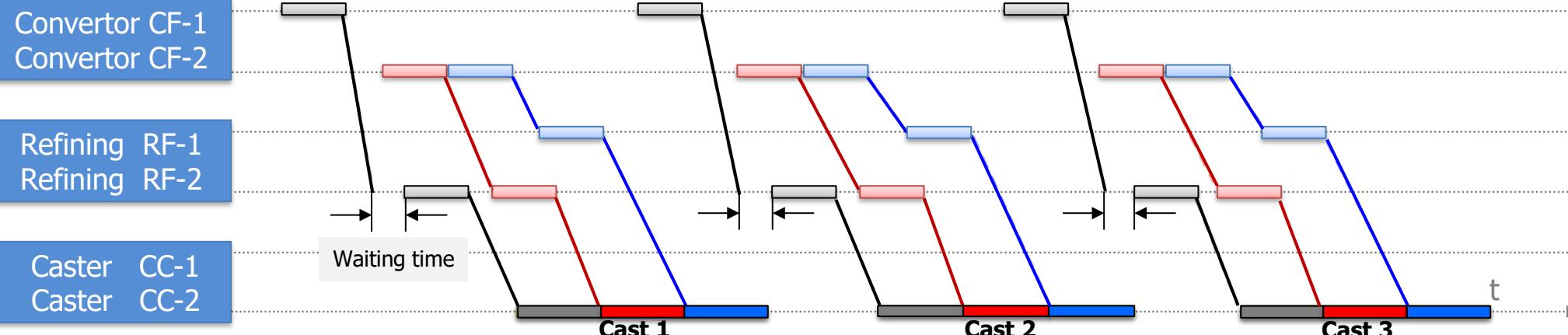
Charge Batching



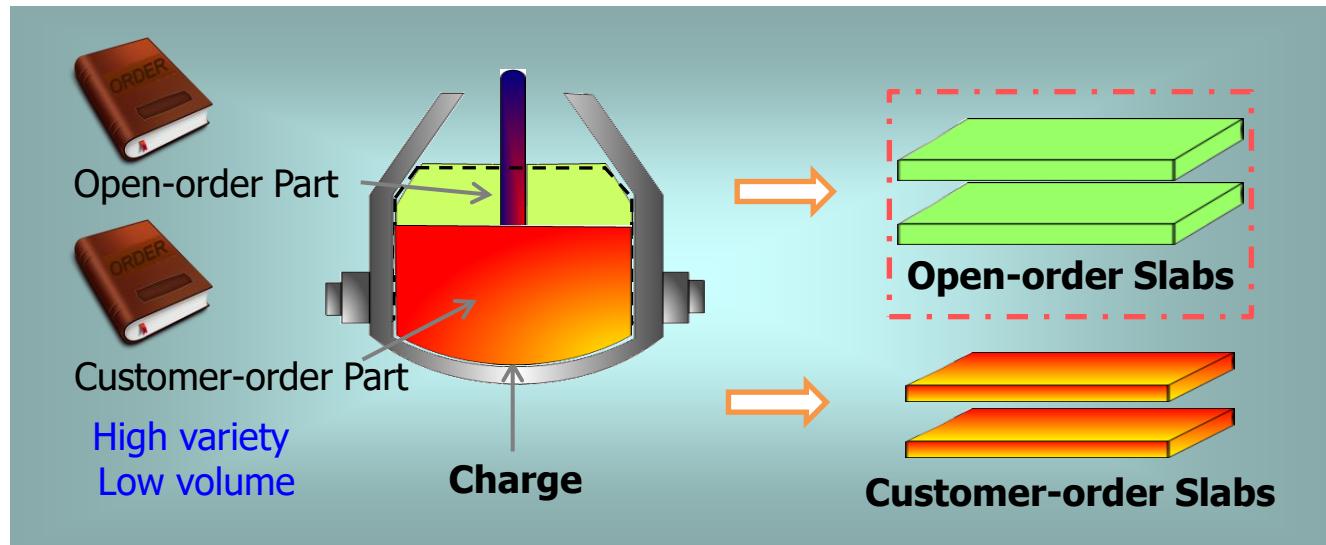
Cast Batching



Steelmaking Scheduling



4. Full-dimension Organic Management System (E) — Production Optimization

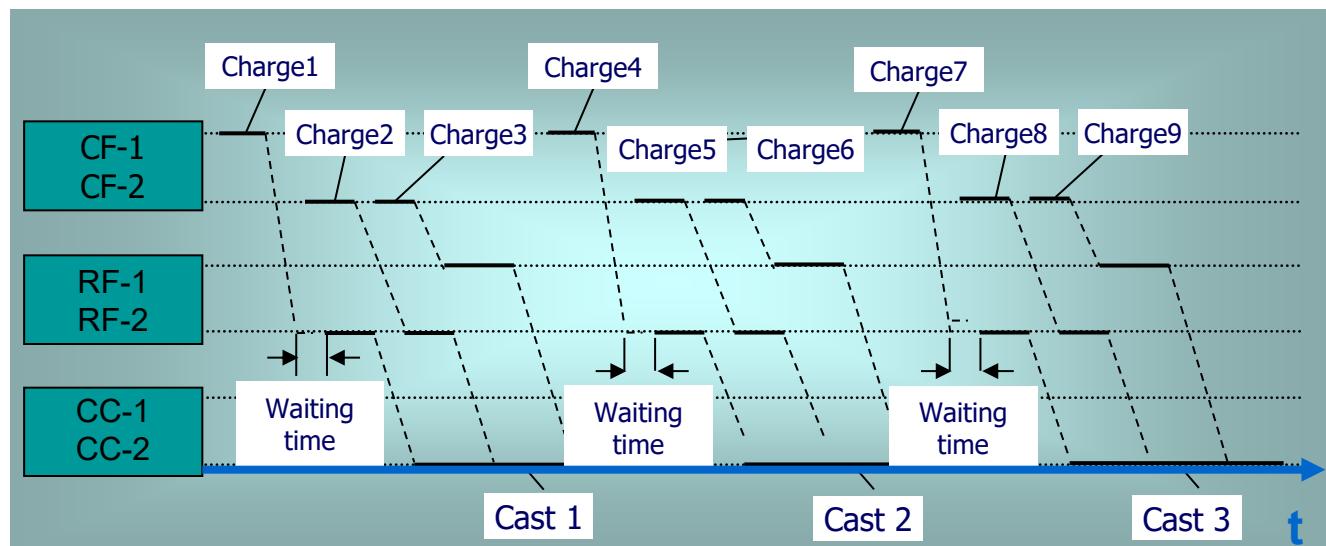


Group all the slabs of different customer orders into batches

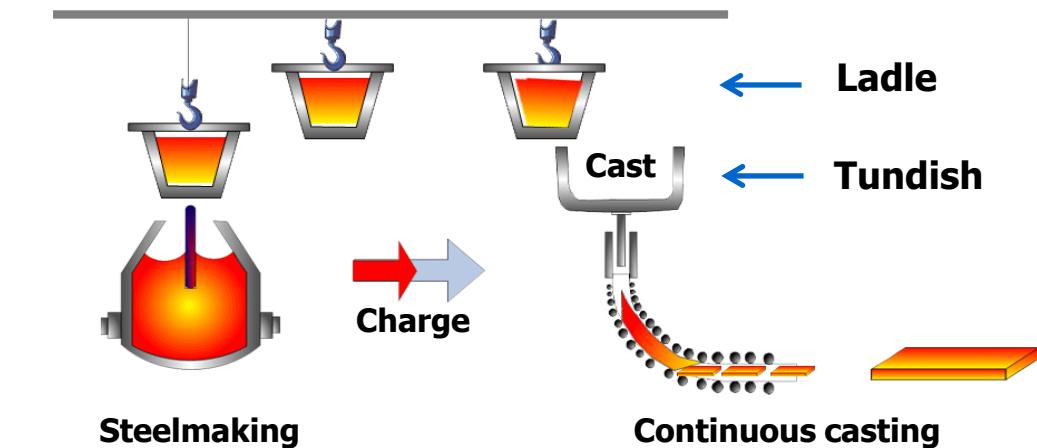
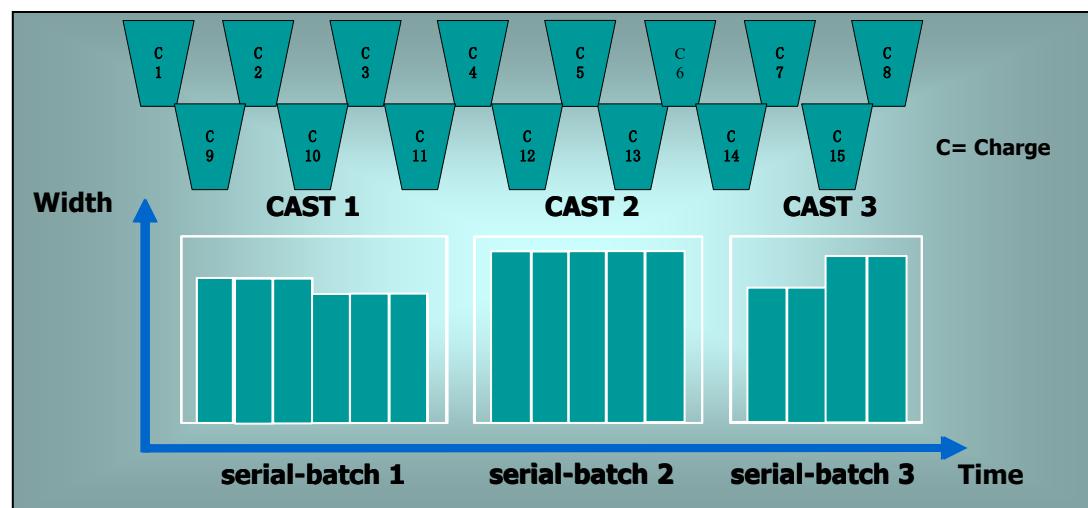
p-median clustering with capacity and additional technical constraints

- Minimize assignment cost
- Minimize open-order slabs
- Minimize unfulfilled cost of order

- Lagrangian relaxation
- Column generation



4. Full-dimension Organic Management System (E) — Production Optimization



Decisions

- Batch and sequence charges to form casts for the given tundishes
- Select a casting width for each charge in a cast

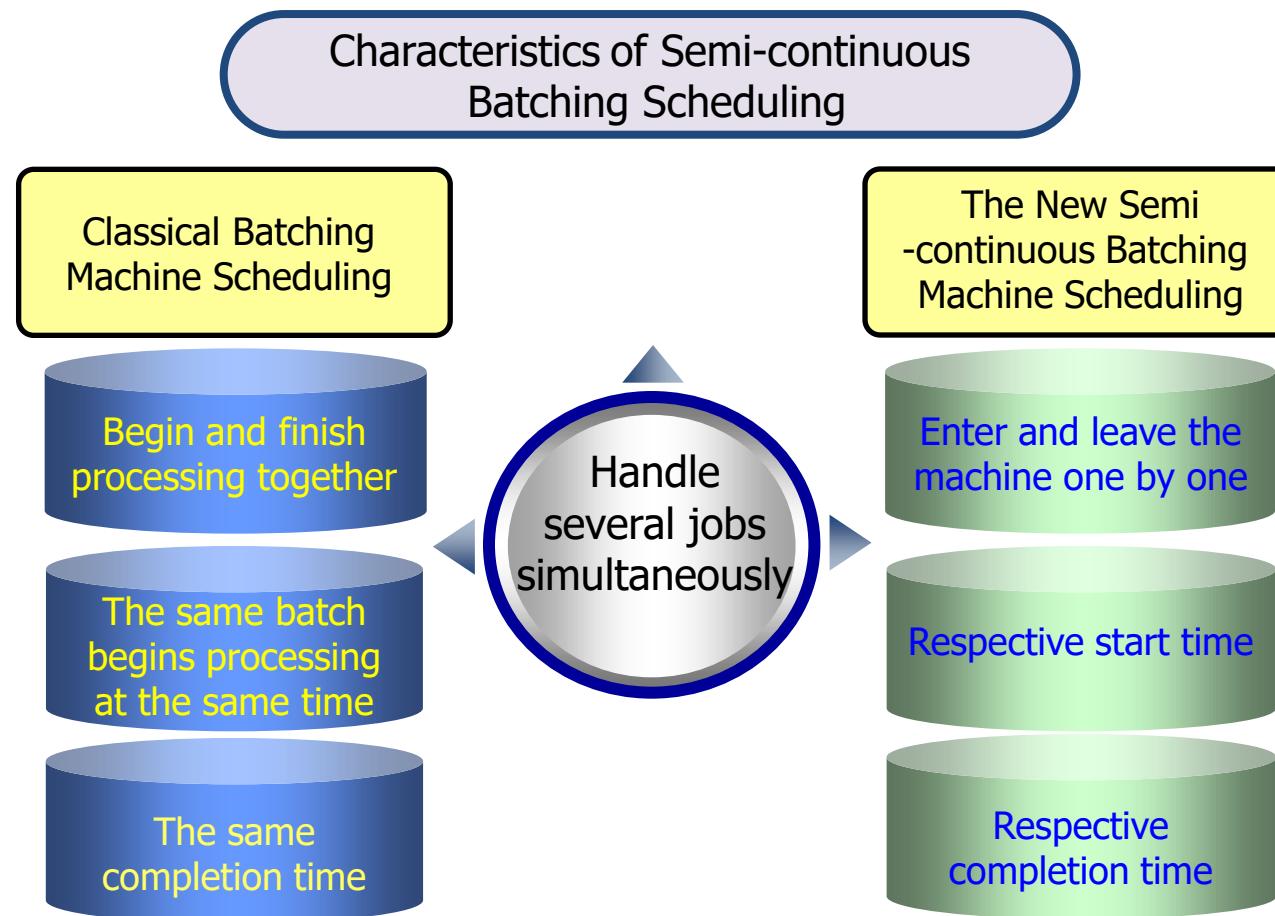
Objectives

- Maximize tundish utilization
- Minimize total grade switch and width switch cost

Constraints

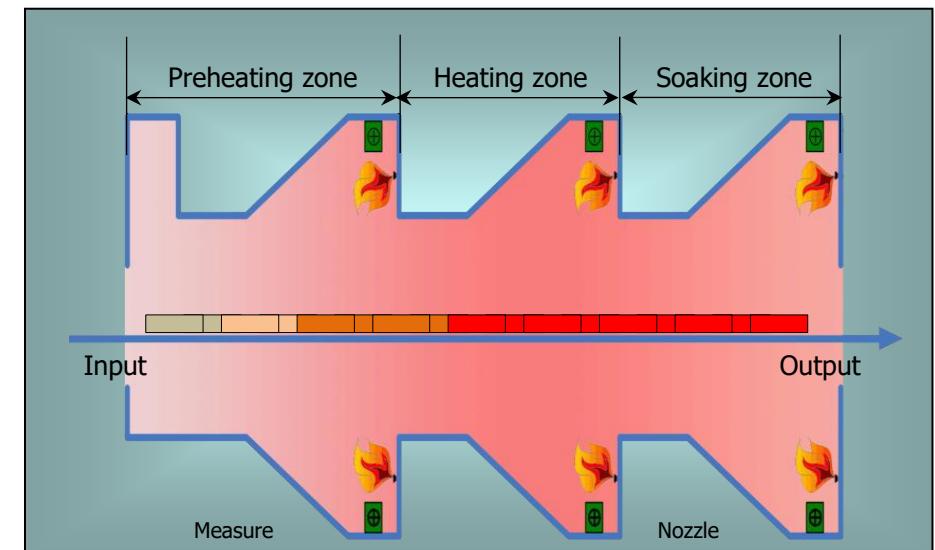
- Grade switch constraint
- Width switch constraint
- Lifespan of tundish

4. Full-dimension Organic Management System (E) — Production Optimization



Traditional batching machines are mainly divided into three types:
(1) burn-in (2) fixed batch (3) serial batching

- ❖ A new kind of batch scheduling
- ❖ We analyze the semi-continuous batch scheduling problem, and present the optimal algorithm.



The heating process of tube-billets in heating furnace

4. Full-dimension Organic Management System (E) — Production Optimization

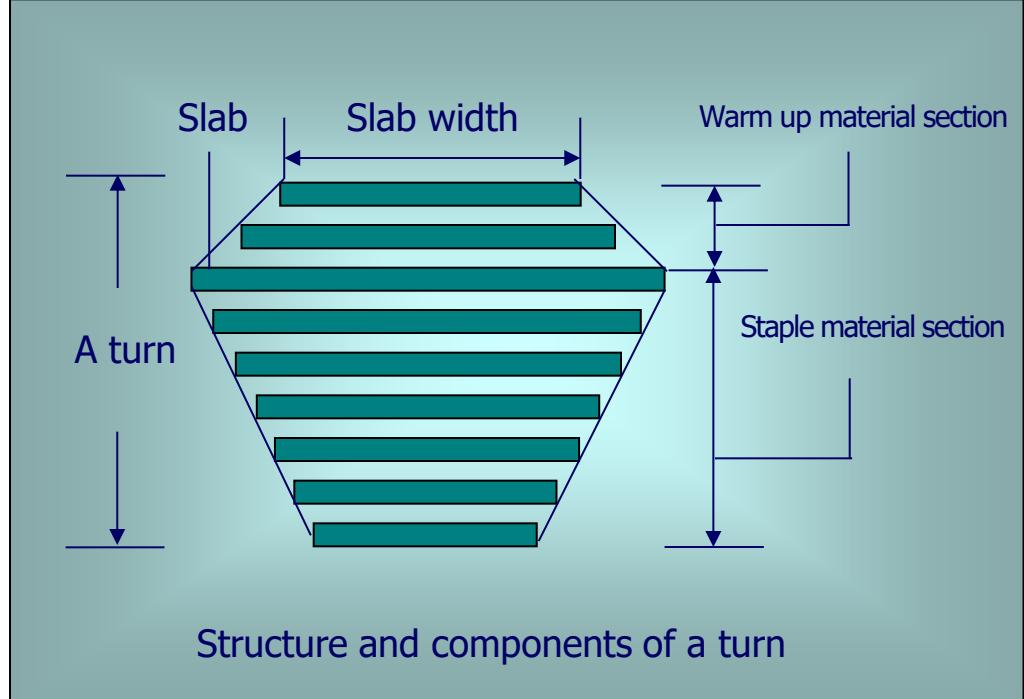
Decision	Objective
Sequence of adjacent jobs to be processed	Minimize the total changeover costs

Minimize $\sum_{i=1}^{N+M} \sum_{j=1}^{N+M} C_{ij} X_{ij}$

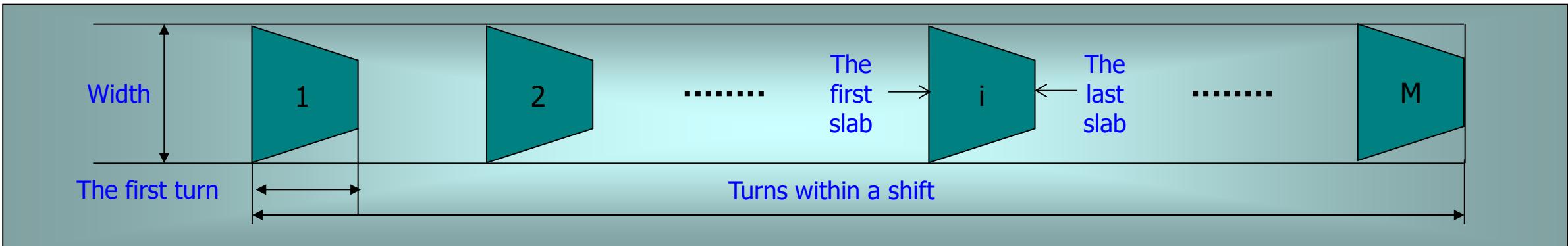
Subject to $\sum_{i=1}^{N+M} X_{ij} = 1, \quad j \in \{1, 2, \dots, N+M\}$

$\sum_{j=1}^{N+M} X_{ij} = 1, \quad i \in \{1, 2, \dots, N+M\}$

$\sum_{i \in S} \sum_{j \in S \setminus \{i\}} X_{ij} \leq |S| - 1, \quad S \subset \{1, \dots, N+M\}, \quad 2 \leq |S| \leq N+M - 2$



Structure and components of a turn



The first turn

Width

1

2

.....

The first slab

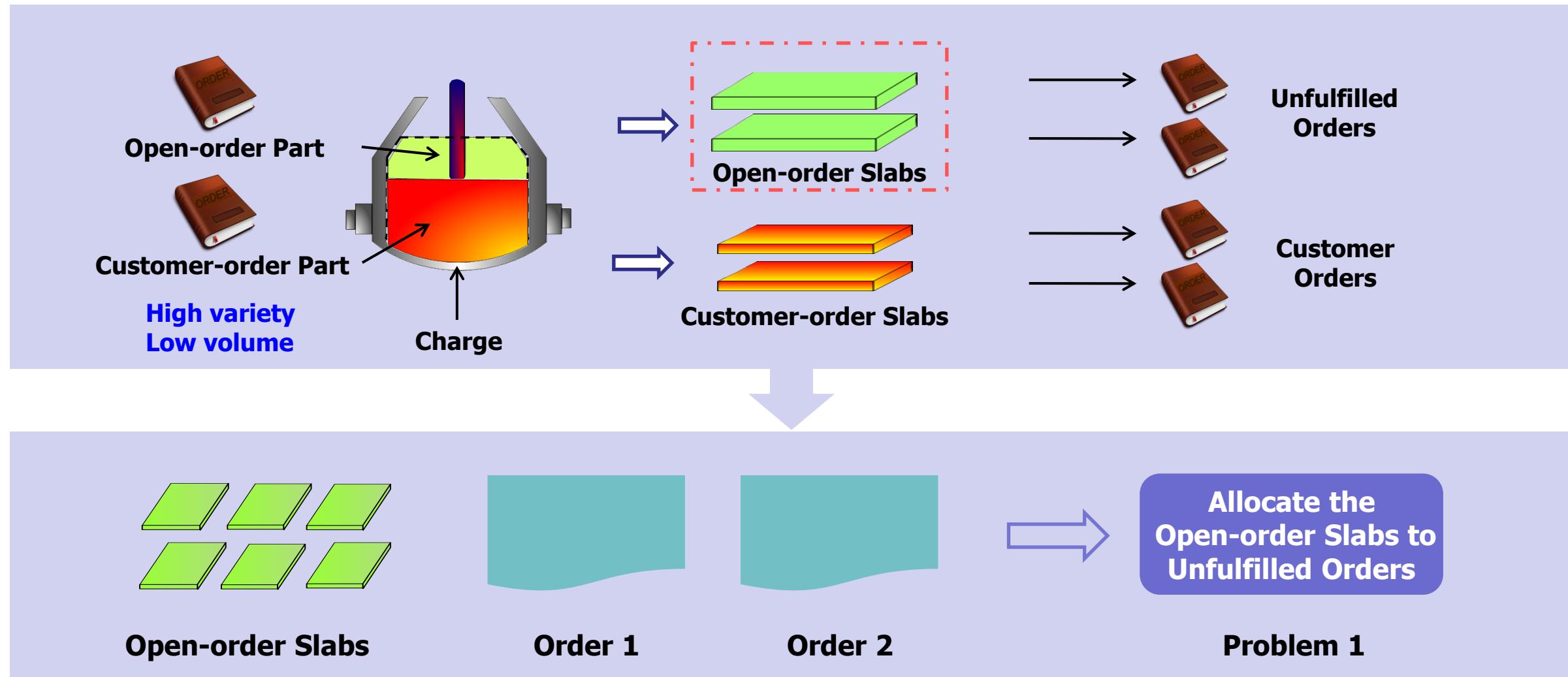
i

.....

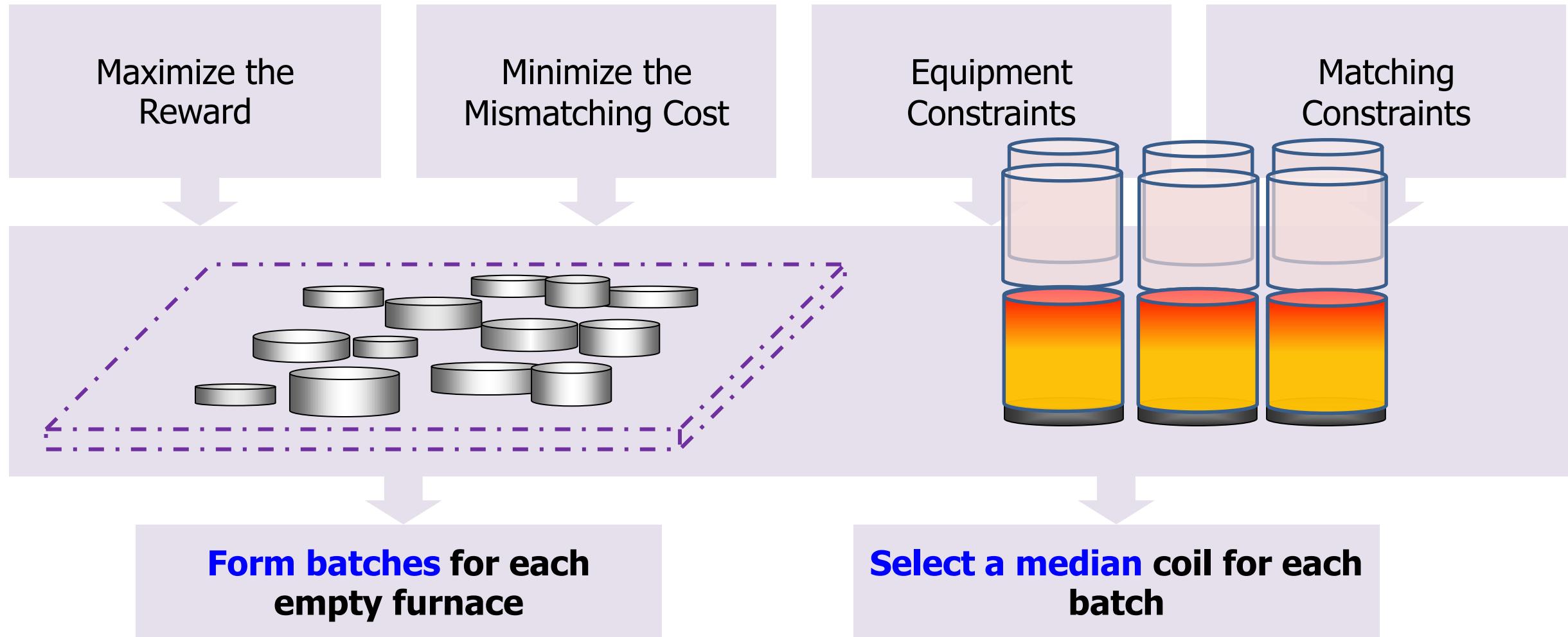
M

Turns within a shift

4. Full-dimension Organic Management System (E) — Production Optimization

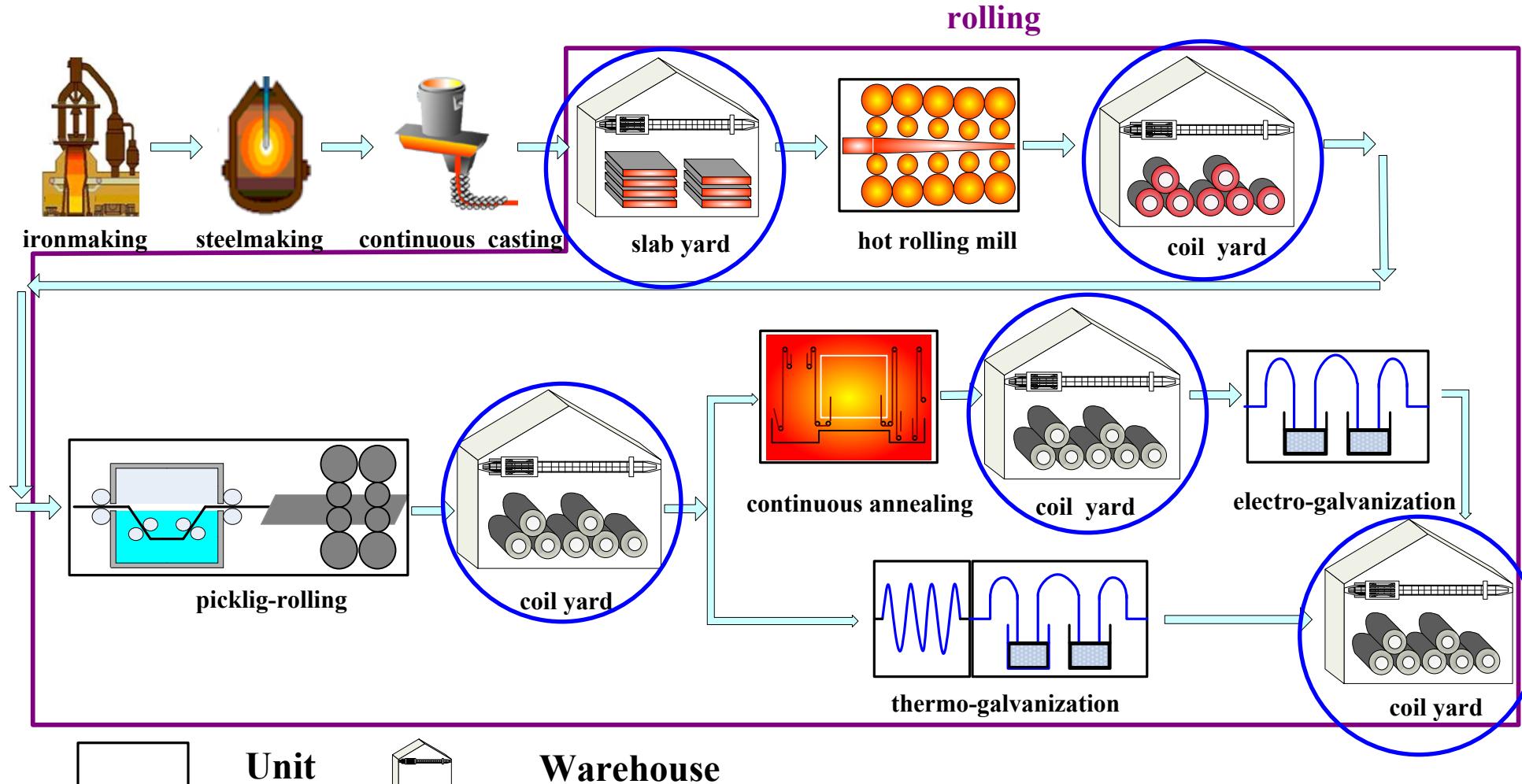


4. Full-dimension Organic Management System (E) — Production Optimization



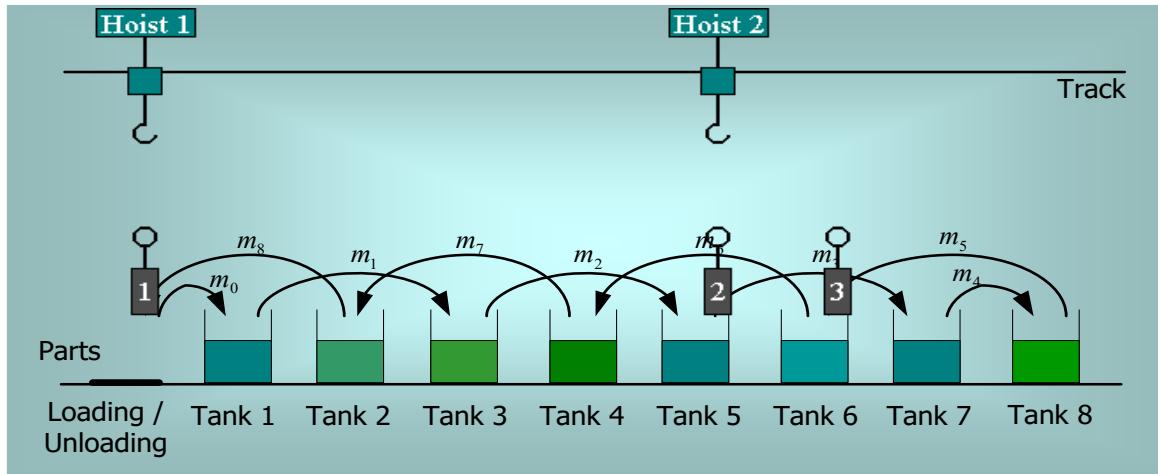
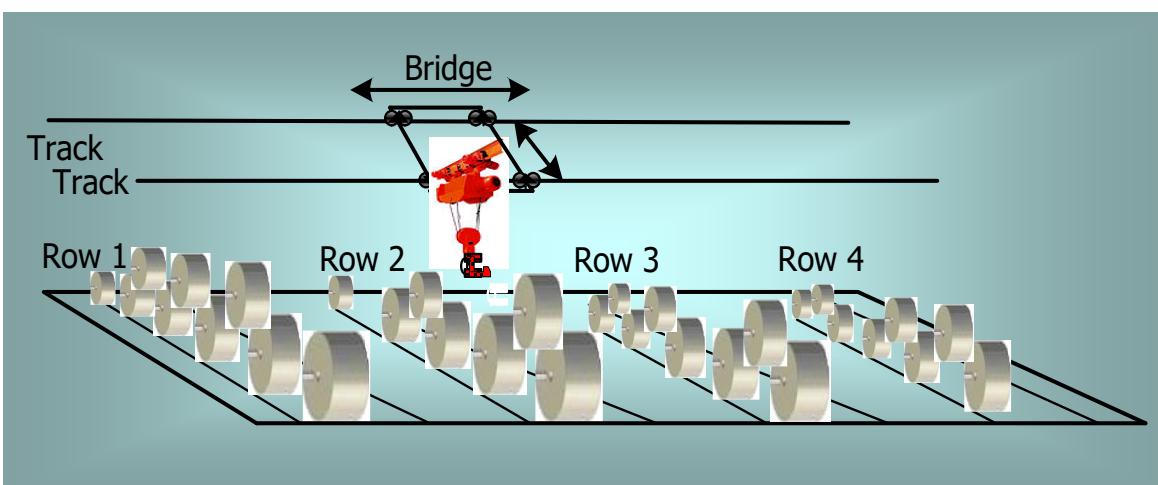
4. Full-dimension Organic Management System (E)

Logistics in Steel Plant



Logistics: Loading/Transportation/Shuffling/Storage/Stowage

Logistics Scheduling



Crane scheduling problem

Determines the transportation sequence for all demanded coils and shuffled position for each blocking coil.

Decision

Retrieval sequence of the target coils and shuffled positions for blocking coils

Objective

Minimize the time by which the retrieval of all target coils is completed

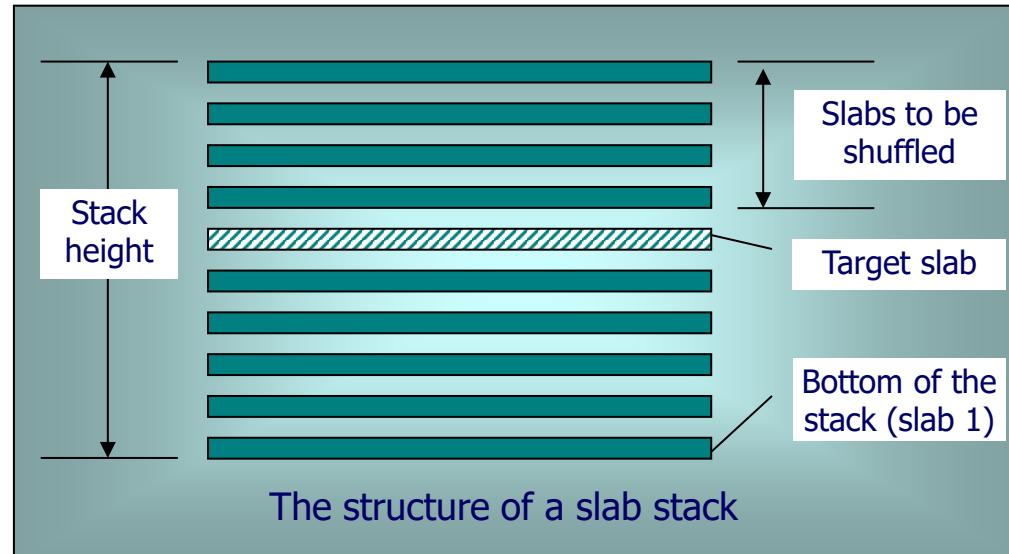
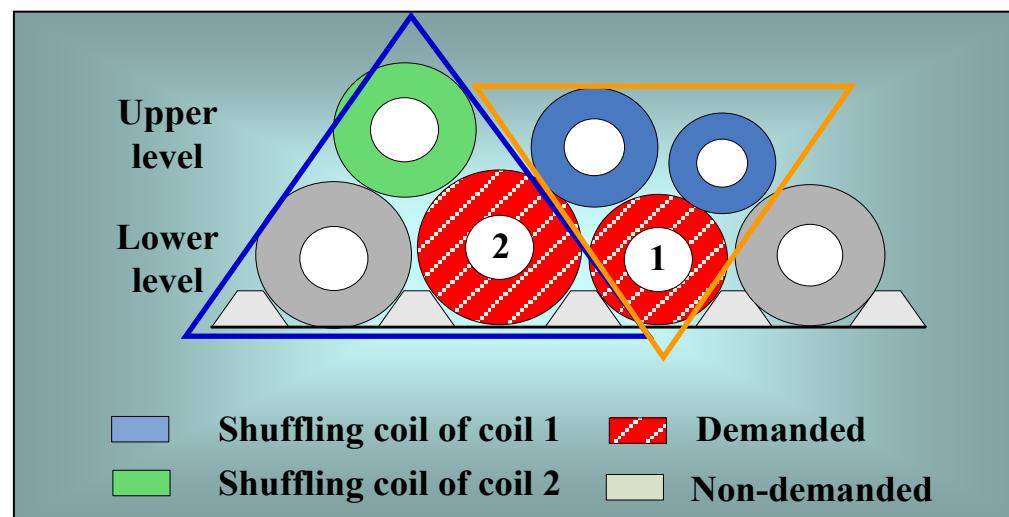
For general case

Heuristic algorithm & worst-case analysis

For special cases

Polynomial algorithms (optimal solutions)

4. Full-dimension Organic Management System (E) — Logistics Optimization



Shuffling problem in steel plants

Assign a storage slot for each shuffled item during retrieving all target items in the given sequence

Decision

Suitable storage positions for shuffled items

For general case

Greedy heuristics

Objective

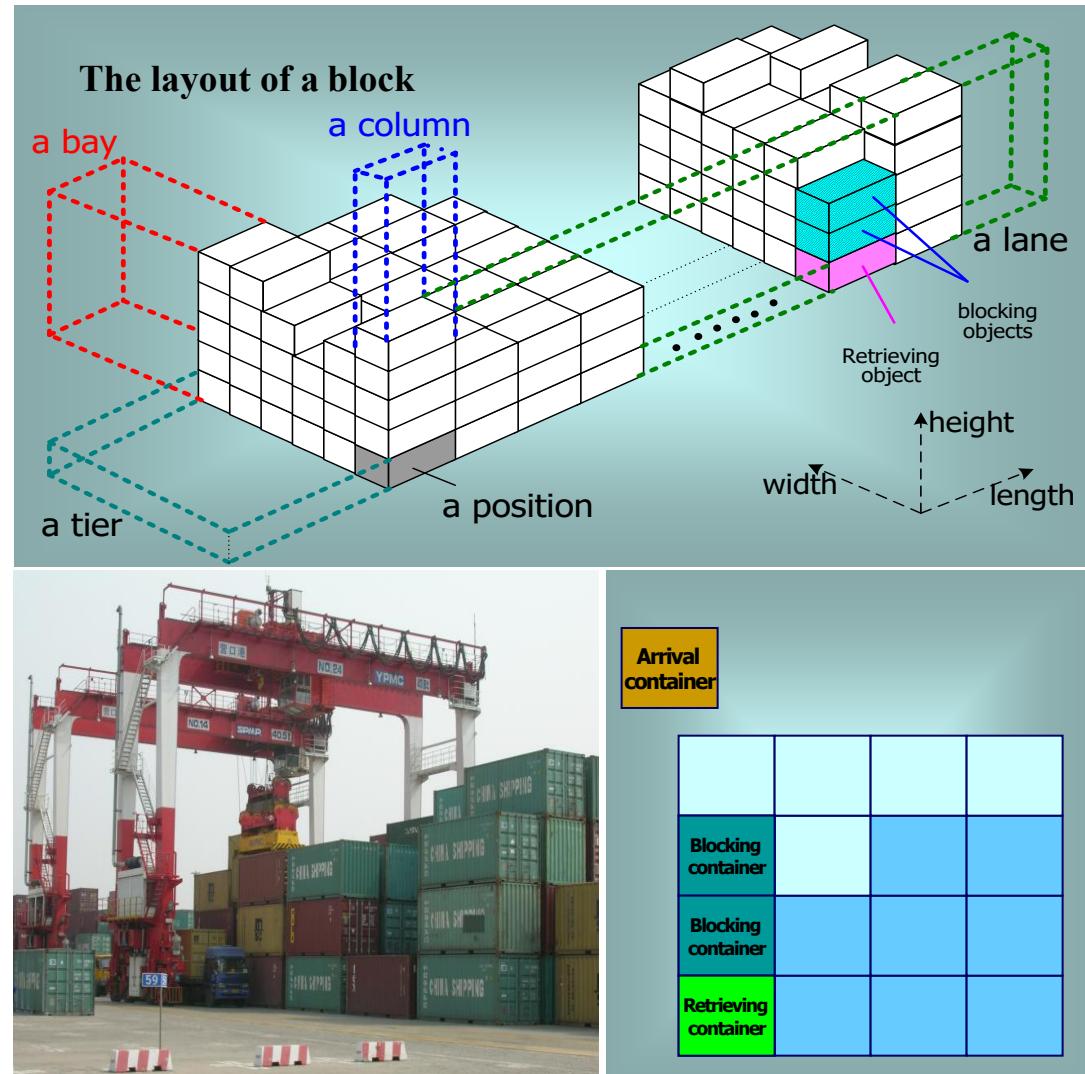
Minimize shuffling and crane traveling

For special cases

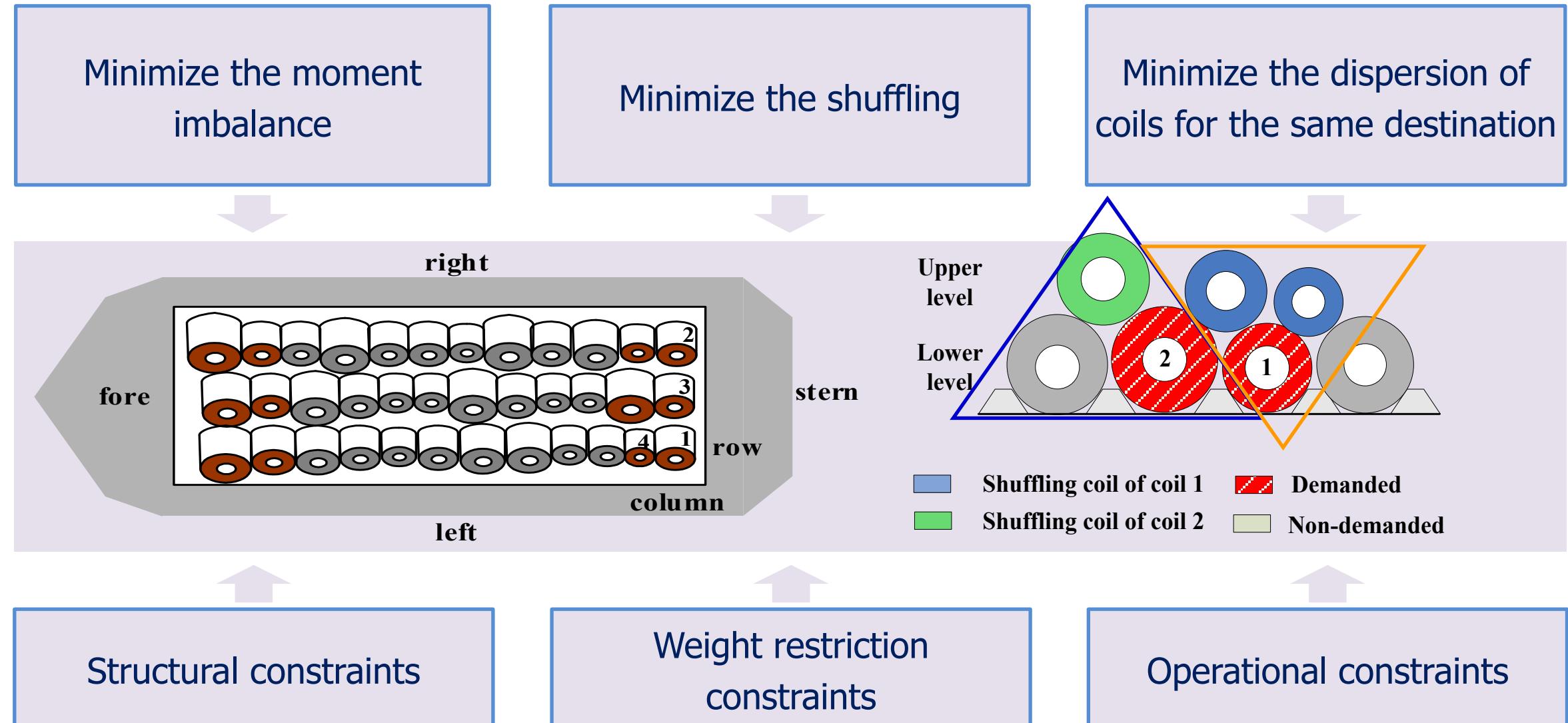
Polynomial algorithms (optimal solutions)

4. Full-dimension Organic Management System (E) — Logistics Optimization

- ❖ For statistic and dynamic reshuffling problem, an improved mathematical formulation and a simulation model are established.
- ❖ Five polynomial time heuristics and their extended versions are proposed and analyzed theoretically.
- ❖ The proposed heuristics outperforms existing methods.

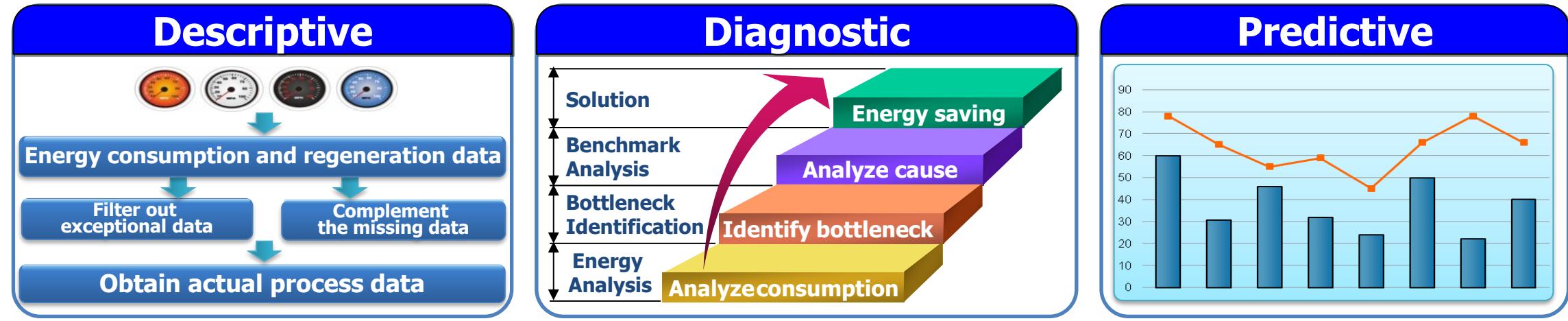
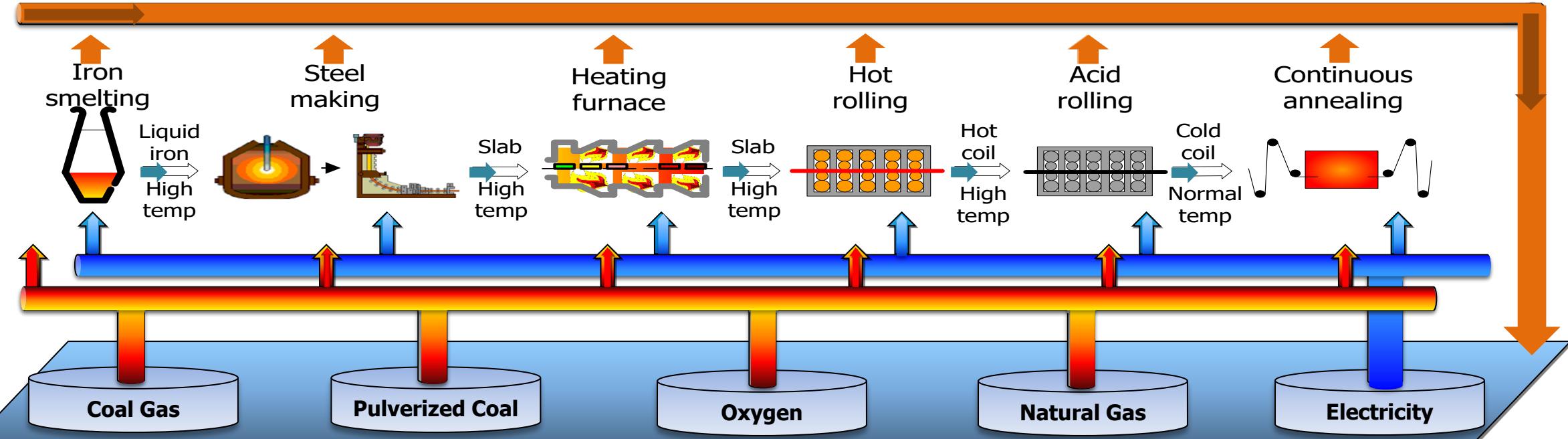


4. Full-dimension Organic Management System (E) — Logistics Optimization



4. Full-dimension Organic Management System (E)

Energy Analytics



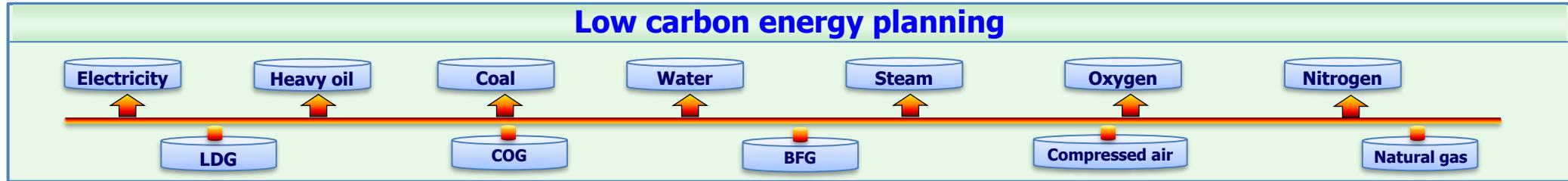
Analytics Optimization

4. Full-dimension Organic Management System (E)

Energy Optimization

D

Decision-making

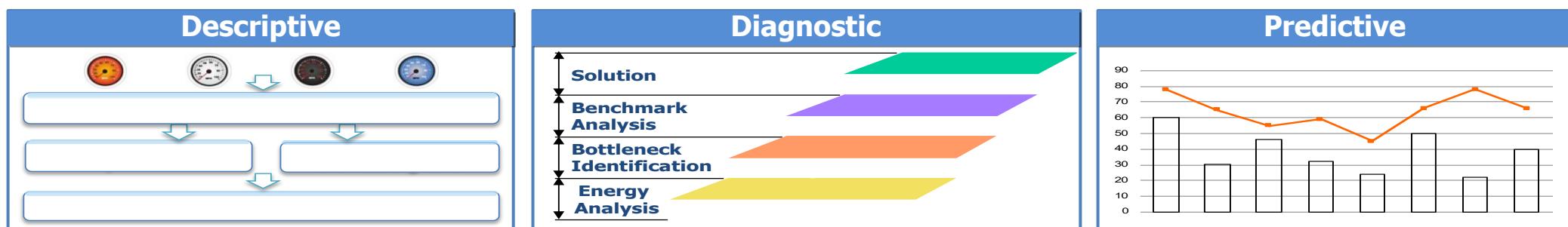


E

Execution

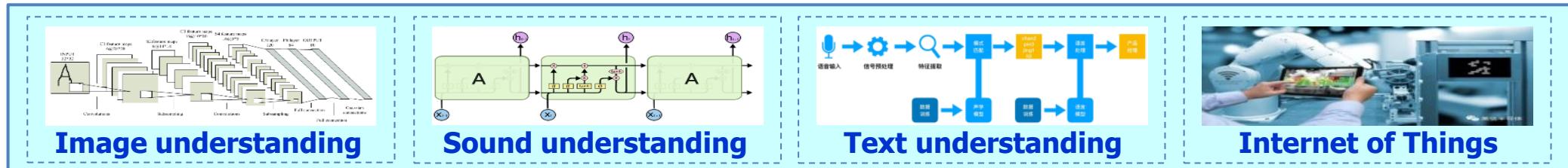
D

Discovery



P

Perception

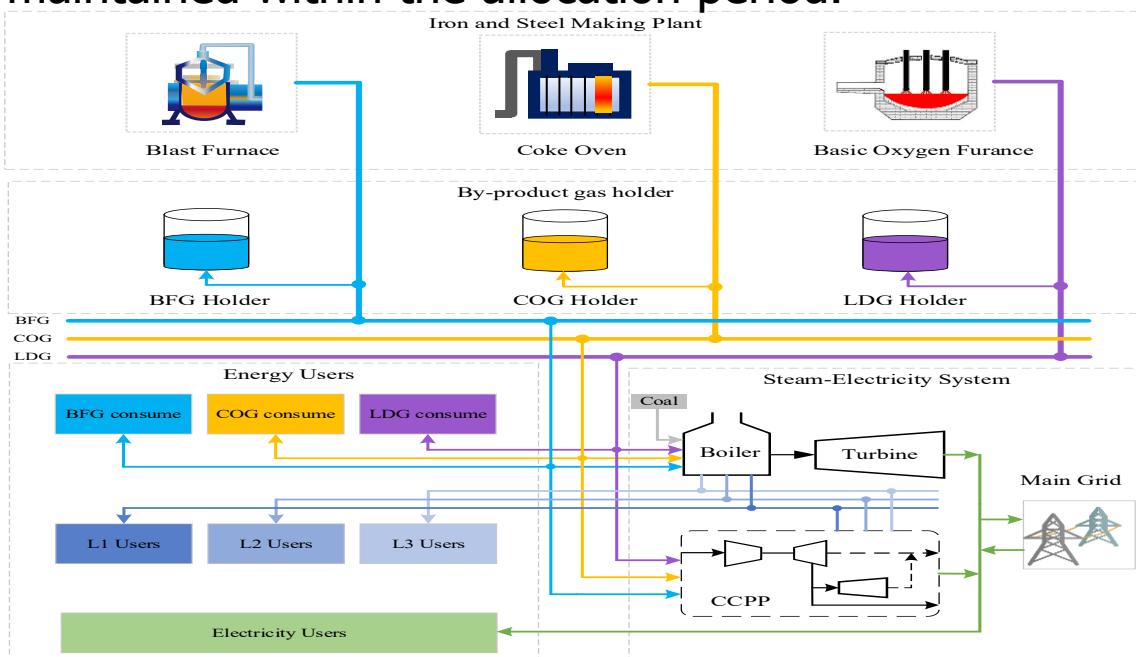


4. Full-dimension Organic Management System (E)

Multi-Energy Planning

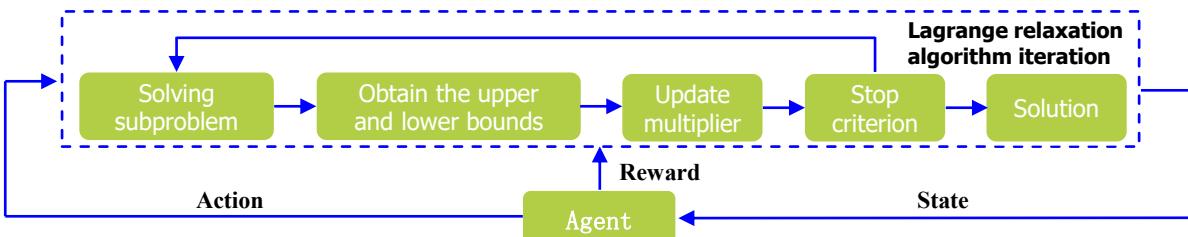
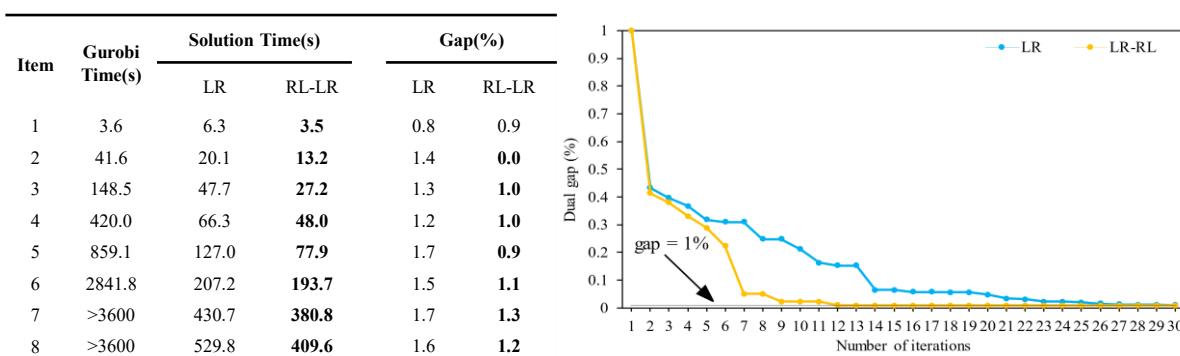
❖ Research Background

In steel enterprises, by-product gases, steam, and electricity constitute a coupled system and the supply and demand balance of all energy carriers is maintained within the allocation period.



❖ Reinforcement Learning Based Improved Lagrangian Relaxation Algorithm

A reinforcement learning based method for step size update is proposed to dynamically adjust the multipliers Lagrangian relaxation algorithm.



The algorithm solves the time comparison

Algorithm dual gap comparison

Miao Chang, Shengnan Zhao, Lixin Tang, Jiyin Liu, Yanyan Zhang. A reinforcement learning based Lagrangian relaxation algorithm for multi-energy allocation problem in steel enterprise.

Computers & Chemical Engineering, 2025, 194:108948.

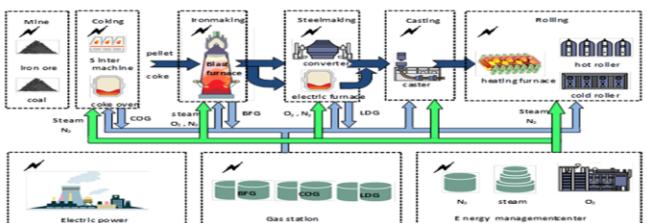
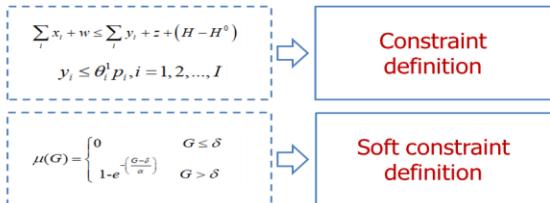
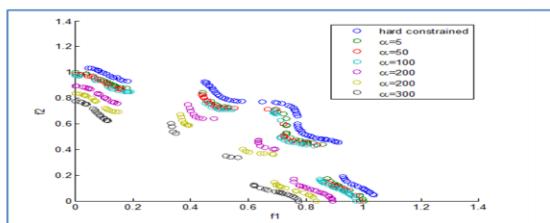
Miao Chang, Lixin Tang, Shengnan Zhao. A Reinforcement Learning-based Lagrangian Decomposition Approach for Energy-Oriented Scheduling Optimization in Steelmaking Process. *IEEE Transactions on Automation Science and Engineering*, 2025.

4. Full-dimension Organic Management System (E)

Gas scheduling

Comprehensive allocation of gas system

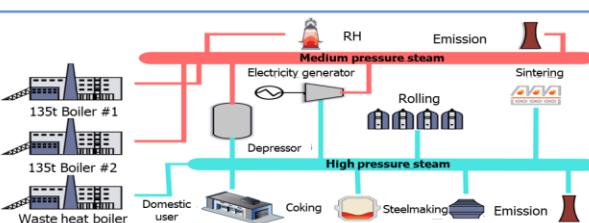
- Determine:** allocation plan of BFG, COG, LDG
- Multi-objective:** minimize consumption cost, purchase cost, emission cost, and energy holding cost
- Solution method:** soft constraint handling NSGA-II



Steam scheduling

Steam scheduling by coordinating demand and electricity generation

- User demand
- Make full use of excess steam resources
- Electricity generation



Objectives

- Maximize electricity generation upon demand

$$z = \max \sum_i (u_i + v_i x_{ti,j=1} + w_i R_{ti})$$

Supply capacity constraints

$$a_i^0 < \sum_{j=1}^4 x_{ij} < a_i^1, b_i^0 \leq x_{ij} \leq b_i^1, r_i^0 \leq R_{ti} \leq \min(x_{ti}, r_i^1), q_i^0 \leq Q_{ti} \leq \min(x_{ti}, q_i^1), x_{ij} = \min \left[a_i^0, \max \left(a_i^0, S_i^D - \sum_{i \in I_1 \cup I_2 \cup J_1} (x_{ti,j} + R_{ti} + Q_{ti}) \right) \right]$$

Fluctuation, safe flow constraints

$$F_t^D = \max \left(0, \sum_i \sum_j (x_{ij} + R_{ti} + Q_{ti}) - e^D \right), F_t^Z = \max \left(0, \sum_i x_{ij} - e^Z \right), \sum_i \sum_j (x_{ij} + R_{ti} + Q_{ti}) - \sum_i \sum_j (x_{i-1,j} + R_{i-1,t} + Q_{i-1,t}) \leq \delta^D$$

Steam demand constraints

$$\eta^Z \sum_i x_{ij} > S_i^Z, \eta^D \sum_i x_{ij} + R_{ti} + Q_{ti} > S_i^D$$

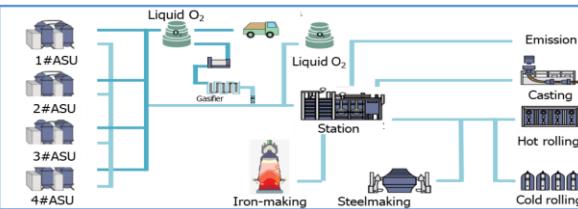
Oxygen scheduling

Task

Dynamically balance and optimize the oxygen system

Supply Modes

- Supplied by oxygen generator
- Supplied by liquid oxygen system



Minimize operating cost of oxygen system

$$Z = \sum_t \sum_{i \in E} \left(c_i \cdot F_{ti} + c_i^A \cdot A_{ti} + c_i^R \cdot Y_{ti} + \frac{1}{2} \gamma_{ti} \cdot c_i \cdot 0.7 B_i \right)$$

Oxygen generators capacity, operating requirements

$$|O_{ti} - O_{t-1,i}| \leq \beta_{ti} \epsilon, \quad G_{ti} = G_{t-1,t} + Y_{ti} - D_{ti}, \quad G_i^0 \leq G_{ti} \leq G_i^1,$$

$$\gamma_{ti} = \max \{0, (\beta_{ti} - \beta_{t-1,i})\}, \quad d_{ti} = \sum_{i \in E} D_{ti}, \quad d_{ti} < \sum_{i \in E} G_{t-1,i}$$

Pipeline pressure, fluctuation limitations

$$(H_t - H_{t-1}) + \sum_{j=1}^n S_{tj} < \sum_{i \in E} A_{ti}, \quad H^0 \leq H_t \leq H^1$$

$$\left| \frac{H_t - H_{t-1}}{H_{t-1}} \right| \leq \delta, \quad A_{ti} \leq \beta_{ti} a_i, \quad A_{ti} < O_{ti}$$

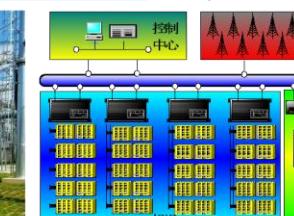
Oxygen demand constraints

$$\sum_j S_{tj} + \sum_{i \in E} Y_{ti} + (H_t - H_{t-1}) + F_t = \sum_{i \in E} O_{ti}$$

Electricity scheduling

Thermal Generation Scheduling

- Running state
- Maximize generation profits
- Output level



System modeling

Representation of emission penalty

$$\text{Penalty Mode: } \begin{cases} w_1, & \sum_{i=1}^T E_i(x_{ti}, u_{ti}) \leq Q_1 \\ \dots \\ w_m, & \sum_{i=1}^T E_i(x_{ti}, u_{ti}) \leq Q_m \\ \alpha, & \sum_{i=1}^T E_i(x_{ti}, u_{ti}) > Q_{m-1} \\ w_M, & \sum_{i=1}^T E_i(x_{ti}, u_{ti}) > Q_M \end{cases}$$

Lagrangian relaxation

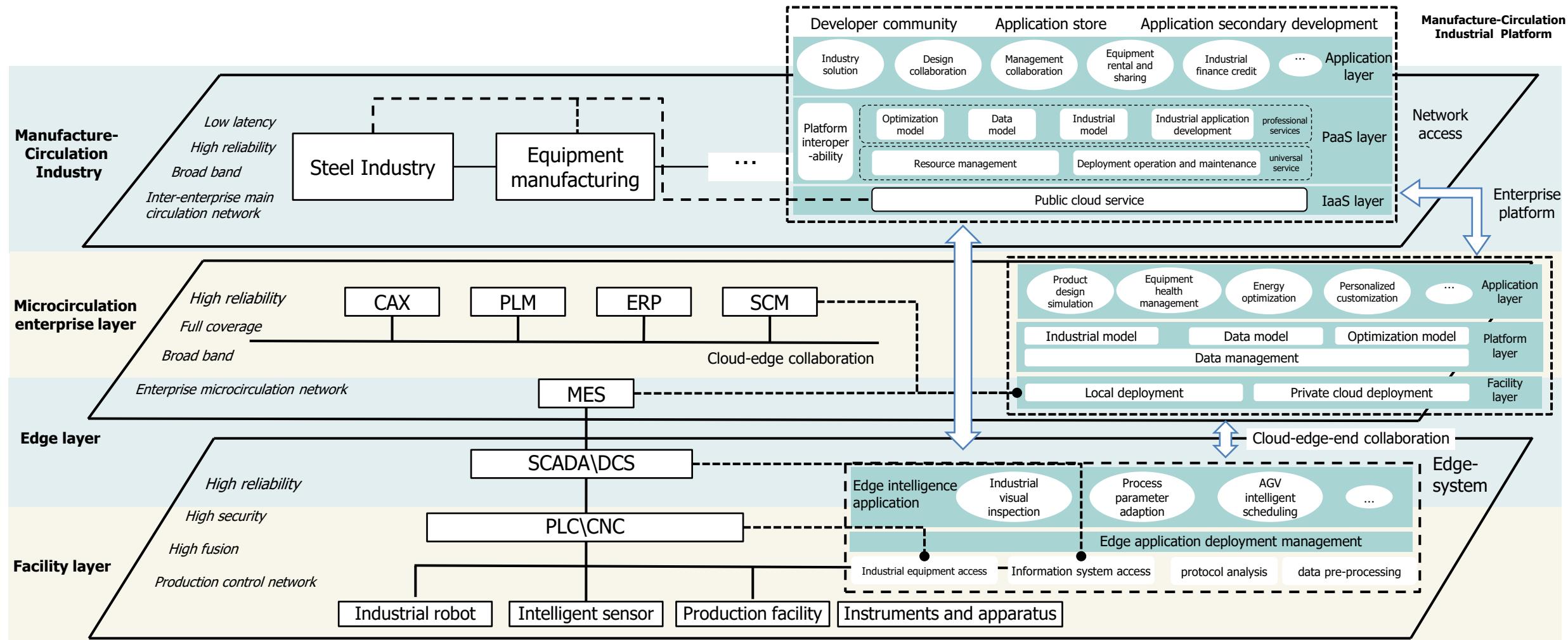
$$\begin{aligned} z_{\text{LES}} &= \min \sum_{i=1}^m c_i x_i \\ \text{s.t. } & x_i \sum_{j=1}^n d_{ij} x_j \geq 1, \quad i = 1, 2, \dots, m, \\ & x_j \in \{0, 1\}, \quad j = 1, 2, \dots, n, \\ & \lambda \geq 0. \end{aligned}$$

$$\begin{aligned} z_{\text{LES}}(\lambda) &= \min \sum_{i=1}^m d_{ij} x_i + \sum_{i=1}^m \lambda_i \\ \text{s.t. } & x_j \in \{0, 1\}, \quad j = 1, 2, \dots, n, \\ & \lambda \geq 0. \end{aligned}$$

$$\begin{aligned} z_{\text{LES}}(\lambda) &= \min \sum_{i=1}^m d_{ij} x_i + \sum_{i=1}^m \lambda_i \\ \text{s.t. } & x_j \in \{0, 1\}, \quad j = 1, 2, \dots, n, \\ & \lambda \geq 0. \end{aligned}$$

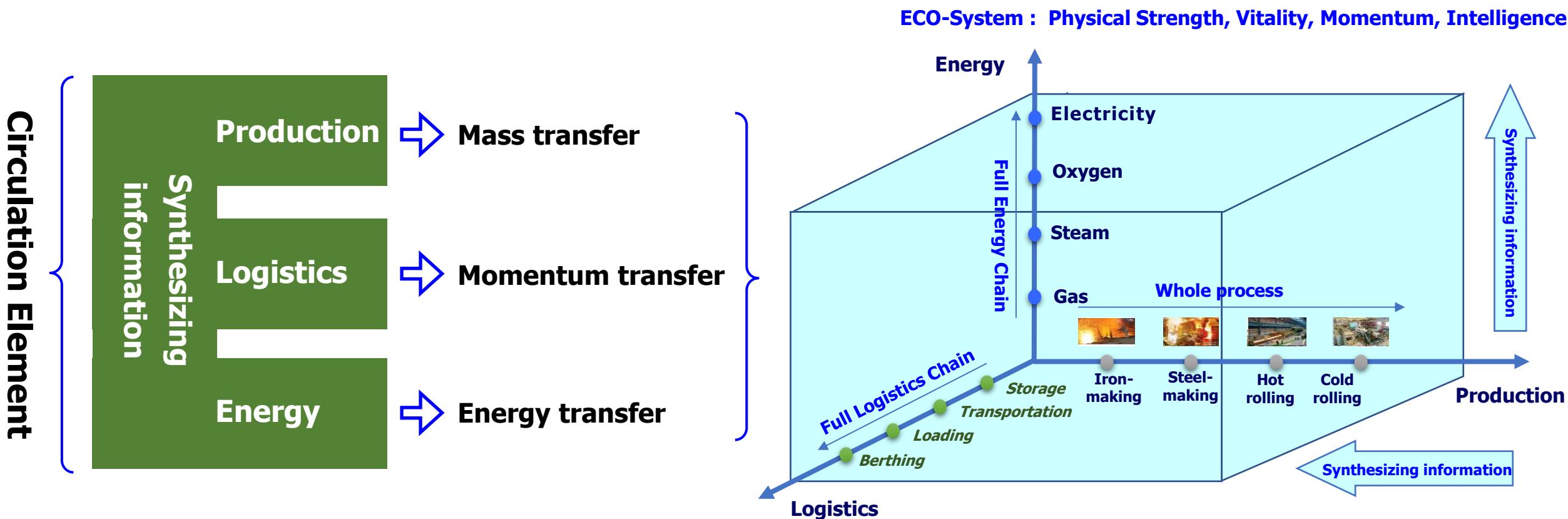
4. Full-dimension Organic Management System (E)

Information Feedback



4. Full-dimension Organic Management System (E)

Full-dimension Organic Management System



4. Full-dimension Organic Logistics Management System (E)

Game Theory

- ❖ Game theory is the study of mathematical models of strategic interactions among rational decision-makers. Industrial organization can be modeled as game problem.
- ❖ Basic components include player, state, action, payoff, strategy and equilibrium.

Game

- Non-co. Game \longleftrightarrow Cooperative Game
- Static Game \longleftrightarrow Dynamic Game

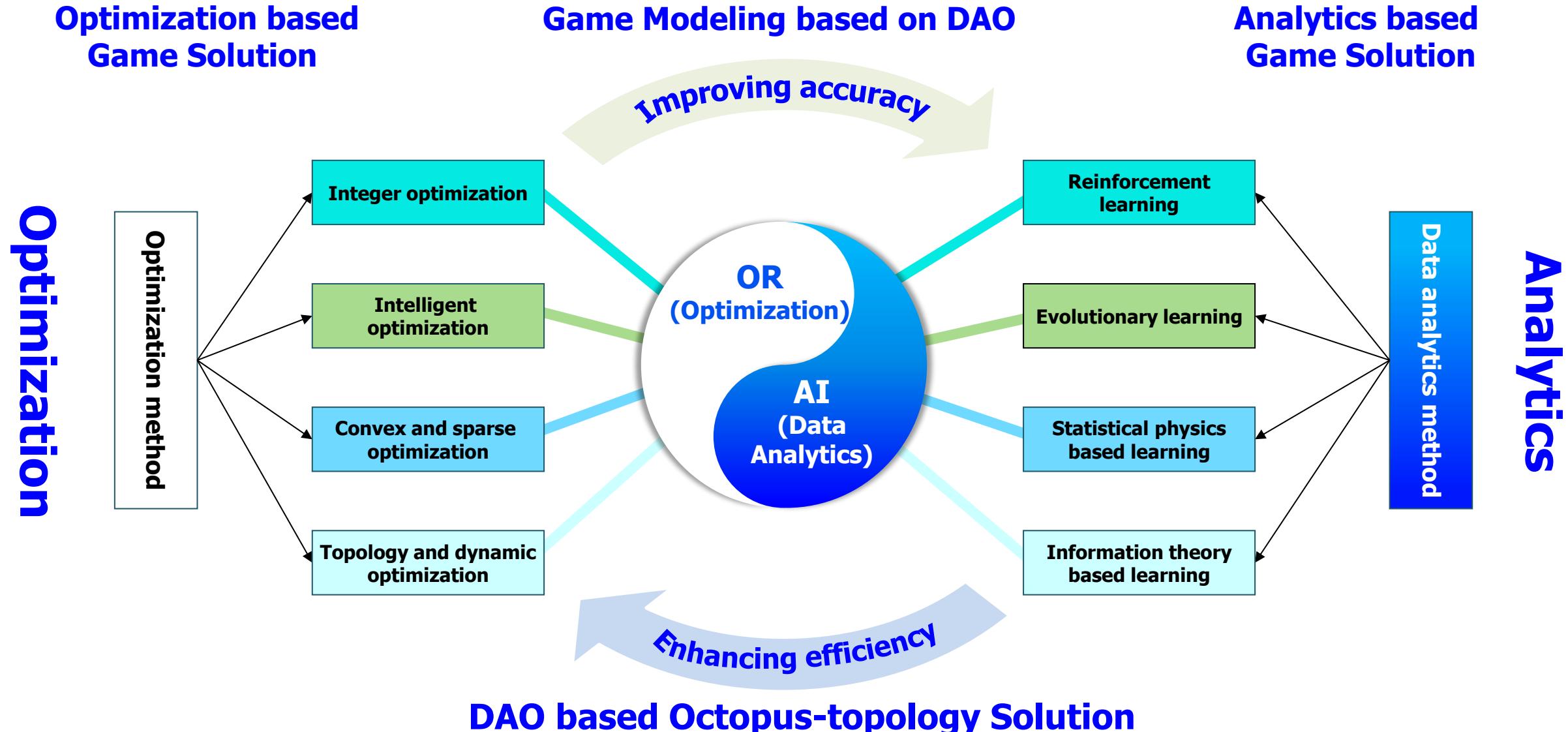
Mechanism Design

- ❖ Mechanism design is an economic framework for understanding how business can achieve optimal outcomes when individual self-interest and incomplete information may get in the way.
- ❖ Mechanism design theory is built on the concept of game theory.

Mechanism Design

Participant Design

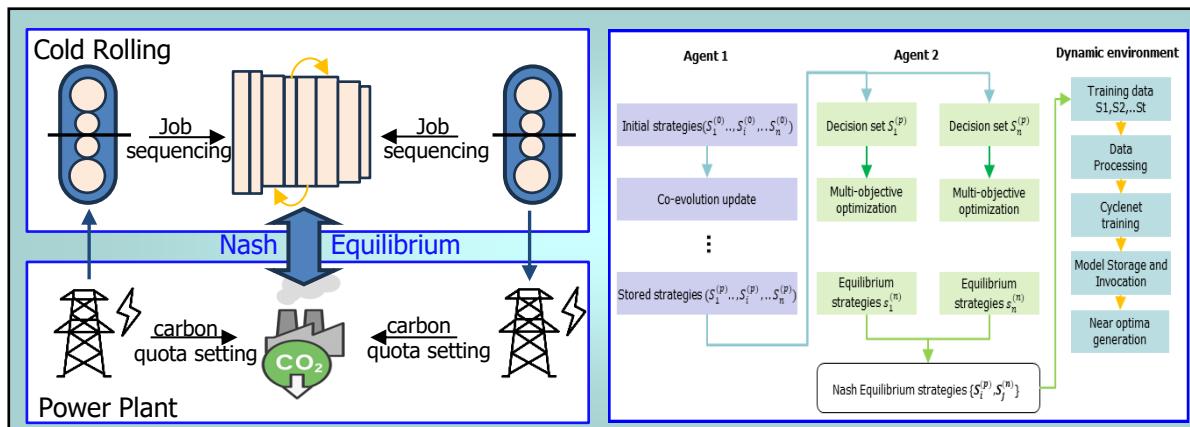
4. Full-dimension Organic Logistics Management System (E)



4. Full-dimension Organic Logistics Management System (E) — Production

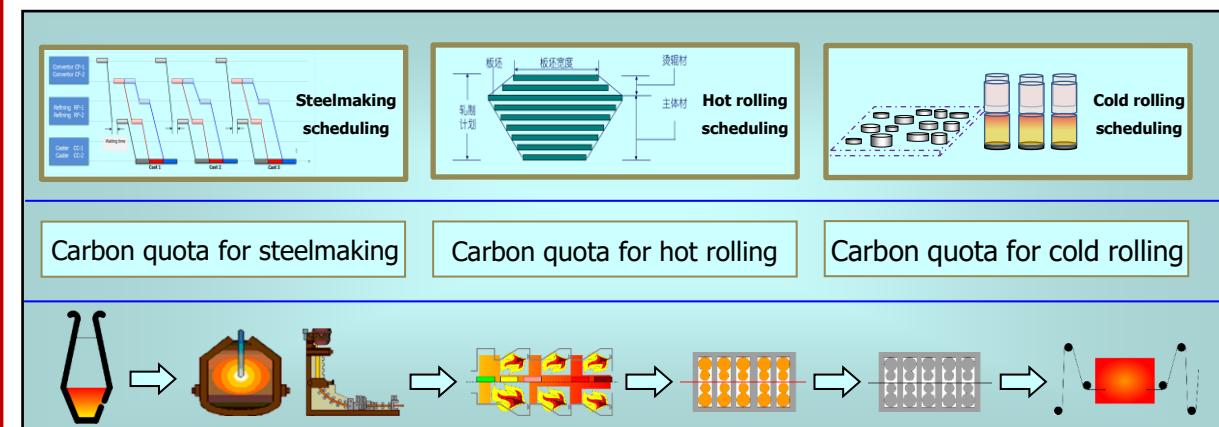
Carbon-aware Production Scheduling Game

- ❖ **Game Modeling:** the scheduling of cold rolling production and electricity consumption is formulated as non-cooperative game model, which aims to make trade-off between production efficiency and carbon emission.
- ❖ **Game Solution:** A co-evolutionary algorithm is developed to solve the low-carbon cold rolling scheduling game problem efficiently. Moreover, the solution process is enhanced via Deep CycleNet initialization.



Carbon-aware Integrated Scheduling Game

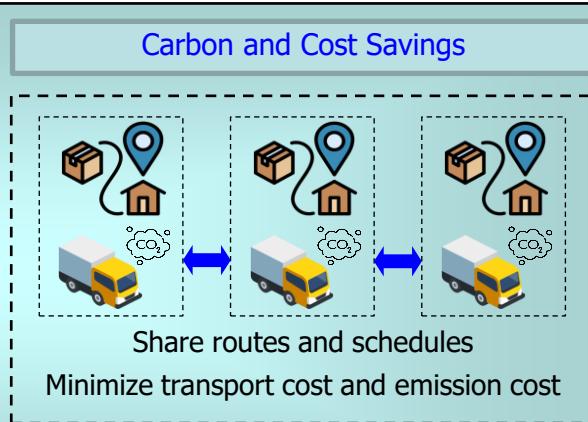
- ❖ **Game Modeling:** the carbon-aware integrated production scheduling is formulated as cooperative game model. The carbon footprint of whole process production is optimized by forming a grand coalition of all production stages.
- ❖ **Solution Methods:** A row generation algorithm is developed to solve the cooperative game model of integrated production scheduling. The solving process is accelerated by the reinforcement learning method.



4. Full-dimension Organic Logistics Management System (E) – Logistics

In-port Logistics Game for Carbon Reduction

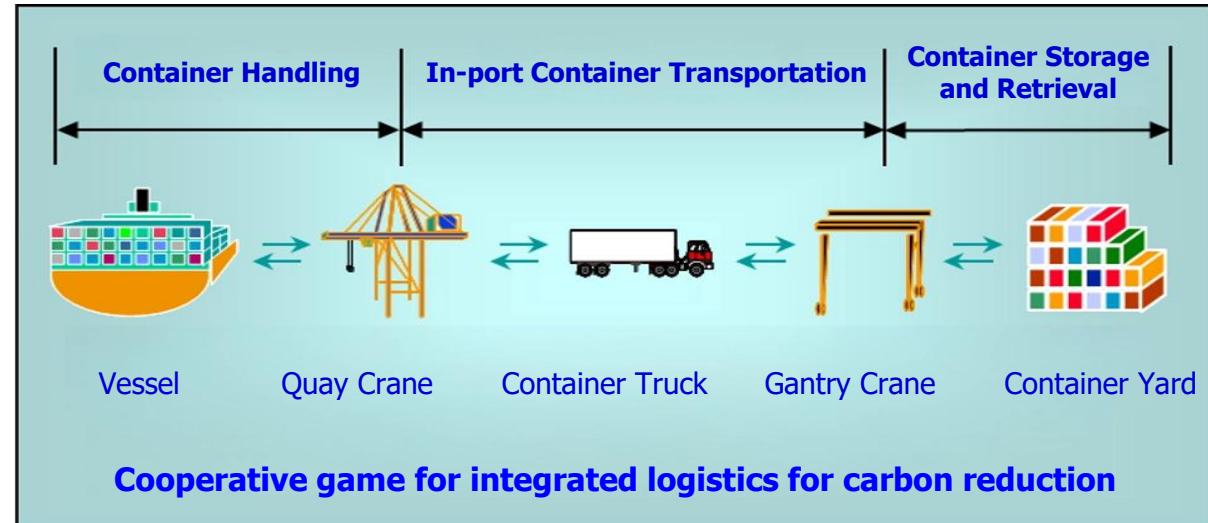
- ❖ **Game modeling:** In container ports, horizontal transport between quays and yards consumes carbon emission. A cooperative game allows trucks to share routes and schedules, reducing empty trips and emissions.
- ❖ **Game solution:** A low-carbon scheduling model minimizes transport and emission costs under time-window constraints. Carbon savings are fairly shared through data-driven optimization for efficient coordination.



Cooperative game mechanism for typical logistics operation

Port-wide Logistics Game for Carbon Reduction

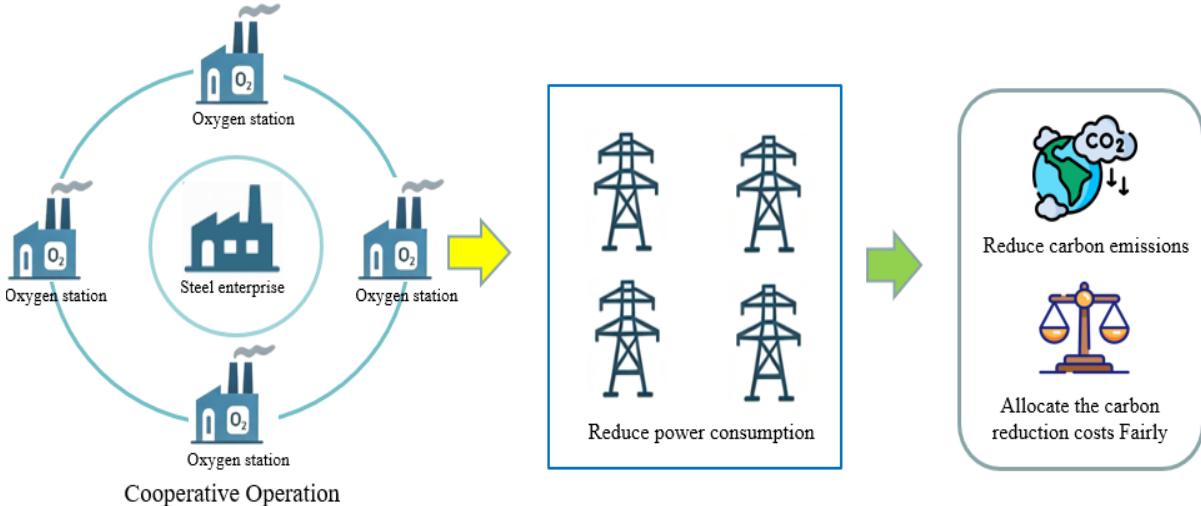
- ❖ **Game modeling:** Container ports are typical logistics systems involving loading, transport, storage, and stacking. A cooperative logistics network integrates operations for low-carbon synergy.
- ❖ **Game solution:** A cooperative game model integrates analytics and integer optimization to compute core allocations of carbon and cost savings. The algorithm improves efficiency for large-scale scheduling.



4. Full-dimension Organic Logistics Management System (E) — Energy

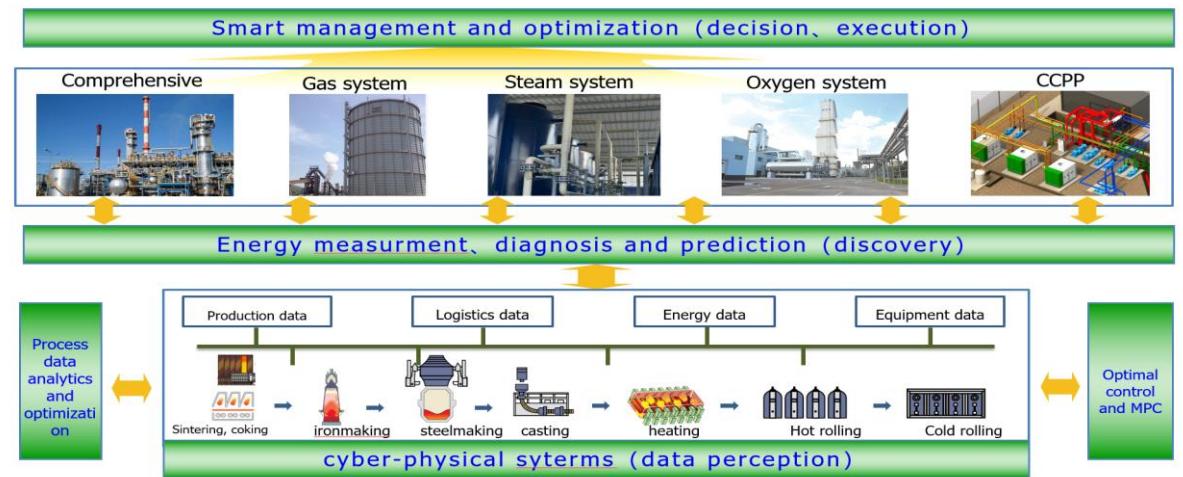
Oxygen System Game for Carbon Reduction

- ❖ **Game Modeling:** Coordinate multi-unit oxygen operations to reduce system-wide electricity consumption and carbon emissions, with cooperative game ensuring fair carbon cost-sharing.
- ❖ **Game Solution:** A hybrid row generation-OA algorithm solves the model, quantifying each unit's marginal carbon reduction contribution. Efficiency is enhanced via reinforcement learning and parallel cutting planes.



Integrated Energy Game for Carbon Reduction

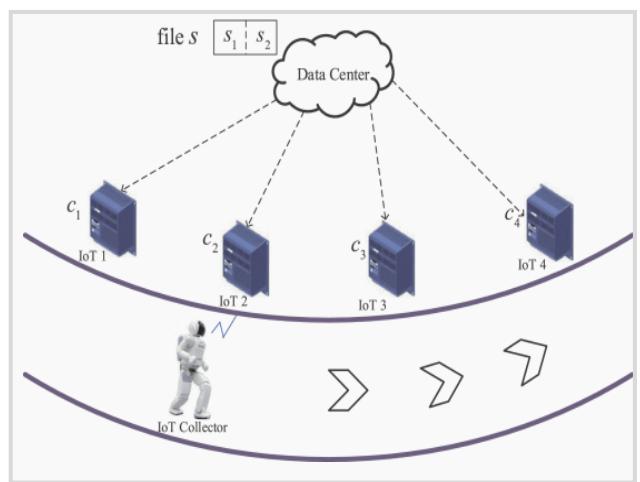
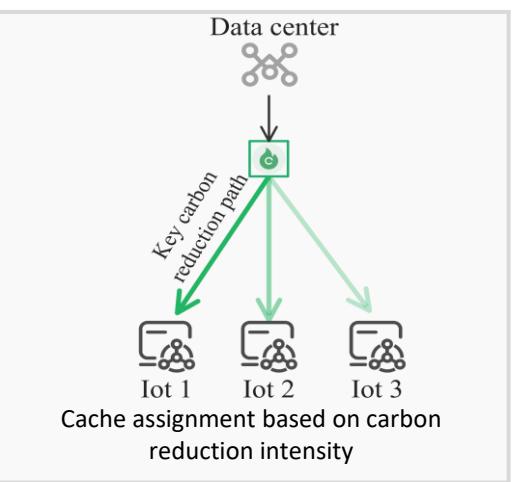
- ❖ **Game Modeling:** For integrated energy systems, establish non-cooperative game model and design collaborative energy subsystem strategies to balance low-carbon objectives with self-sufficiency.
- ❖ **Solution Method:** A RL guided conditional variational autoencoder based dynamic multi-objective optimization is established to online solve the model, yielding dynamic game equilibria among multi subjects in each period.



4. Full-dimension Organic Carbon-Reduction System (E) – Information

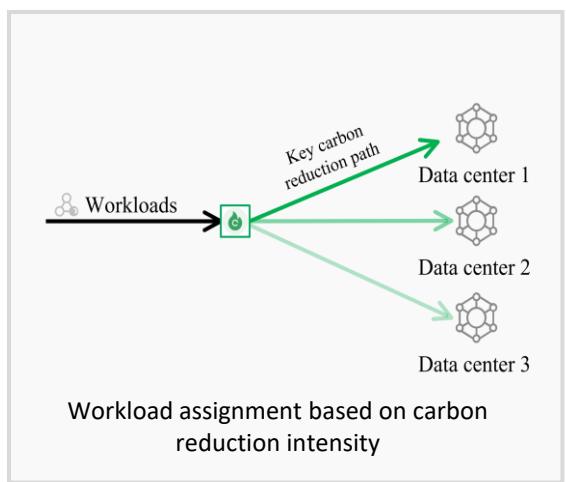
Low-carbon Mechanism for Edge Computing Nodes

- ❖ **Game Modeling:** Design energy-aware caching at edge nodes to meet power and carbon-intensity constraints, reducing latency, bandwidth, and transmission energy through incentive-driven low-carbon operation.
- ❖ **Game Solution:** A two-stage game-theoretic mechanism coordinates edge–center topology via matching games and optimizes caching through Stackelberg games over backhaul links for low-carbon collaboration.

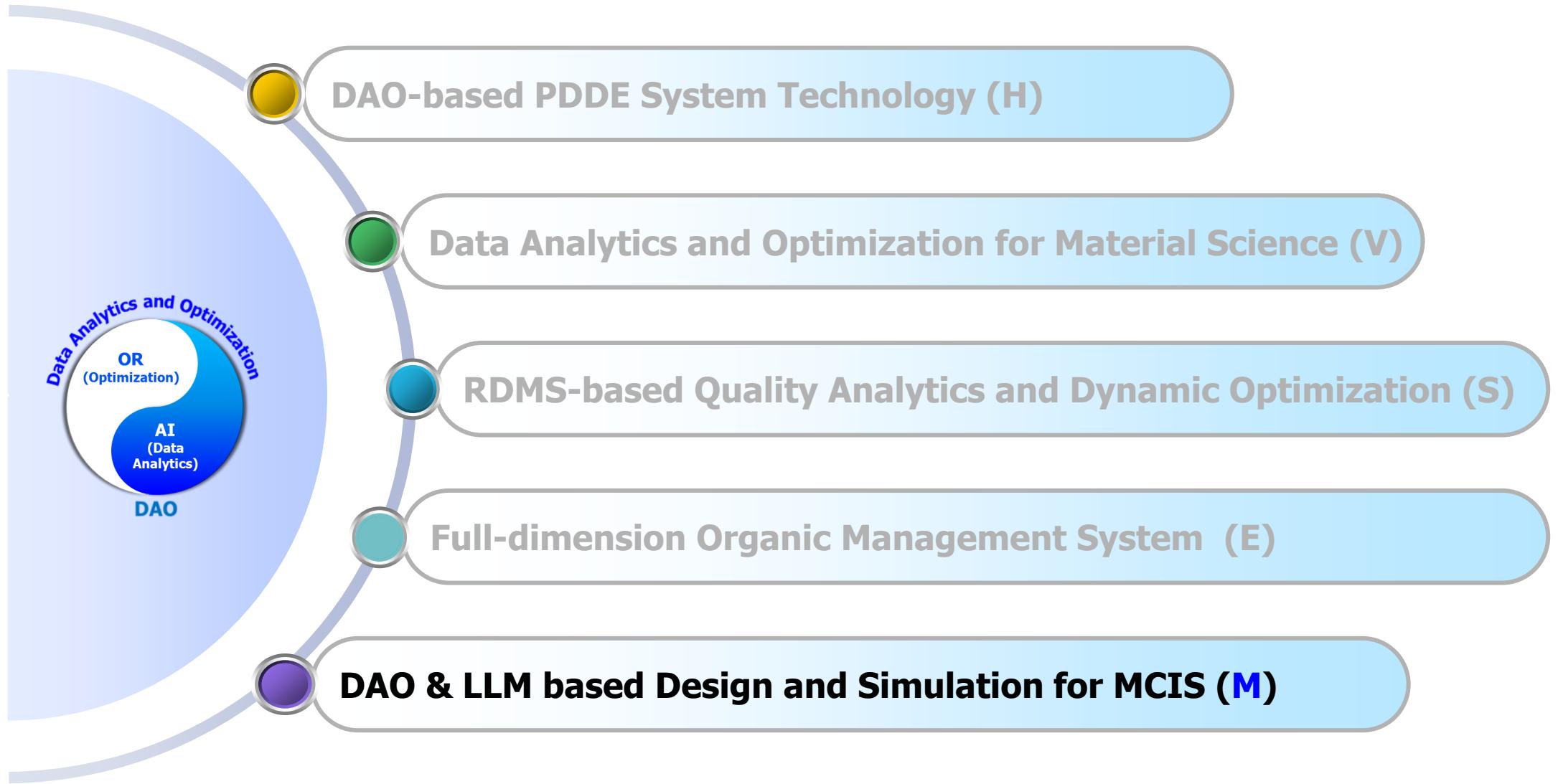


Low-carbon Mechanism for Computing Centers

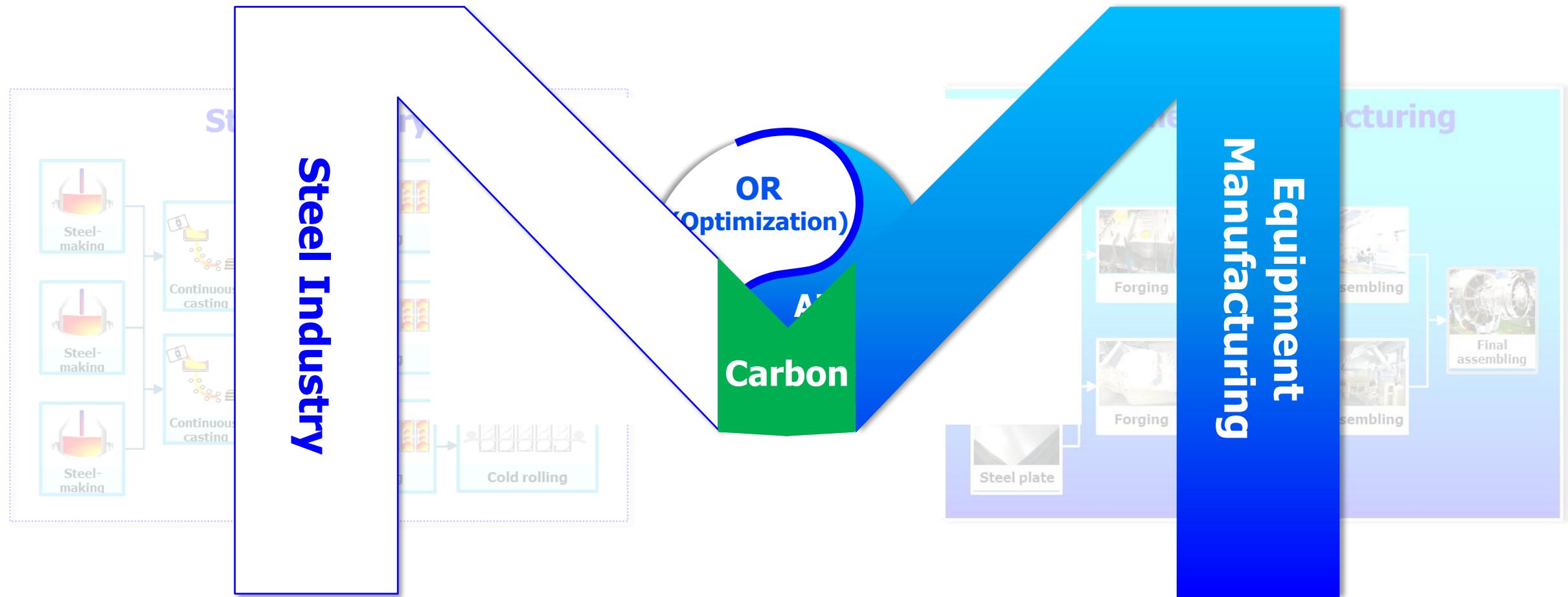
- ❖ **Game Modeling:** Determine the workload allocation across **data centers**, considering hardware heterogeneity, dynamic electricity pricing, inter-center data transfer costs, and **carbon footprint reduction**.
- ❖ **Game Solution:** A **Stackelberg** game model coordinates workload allocation, where each task type minimizes carbon emissions, and **deep reinforcement learning** derives strategies toward **Nash equilibrium**.



Outline



5. DAO & LLM based Design and Simulation for MCIS (M)



5. DAO & LLM based Design and Simulation for MCIS (M)

Enterprise

A tree

An enterprise

Industry

A forest

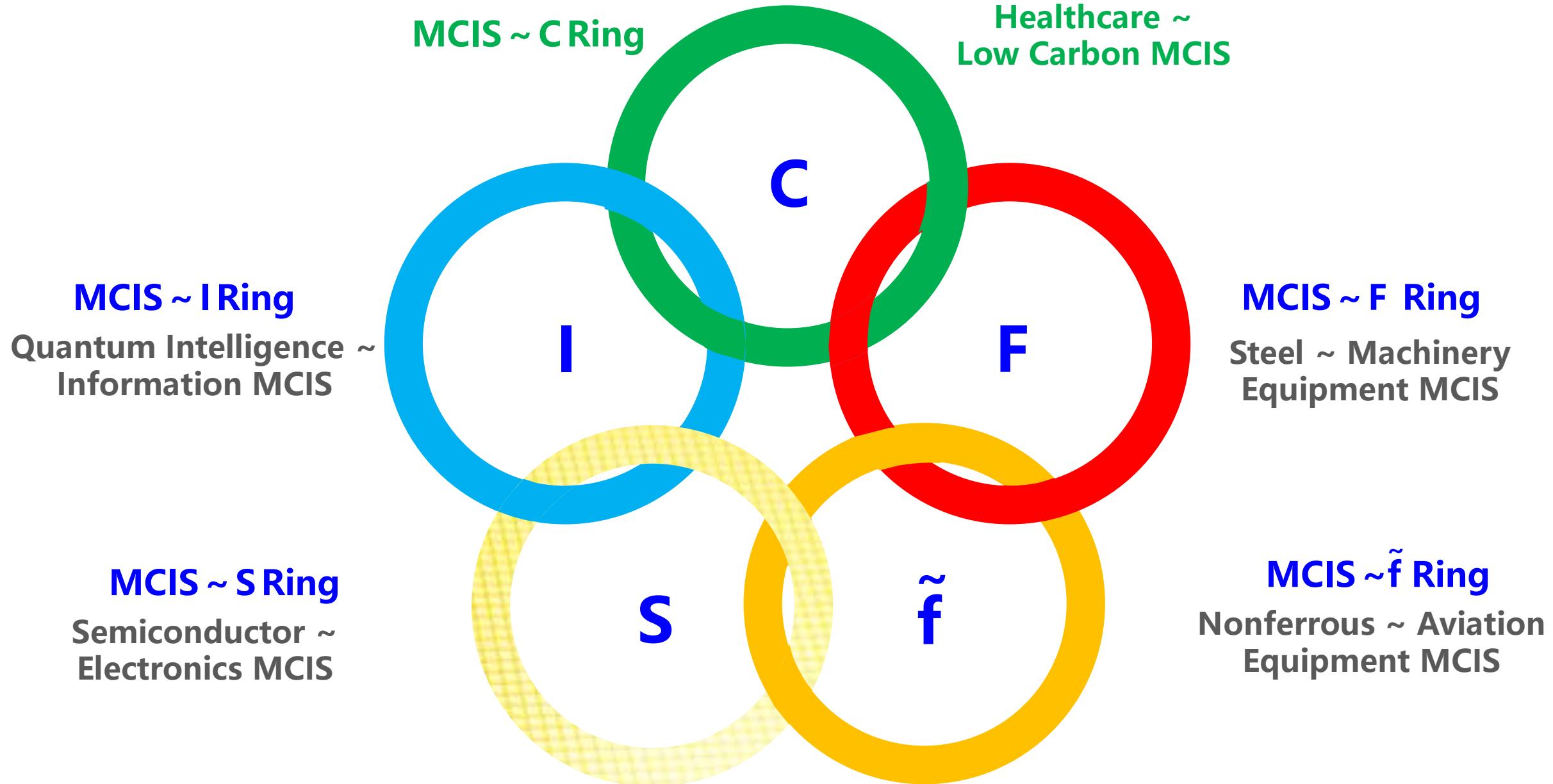
Homogeneous enterprise

System

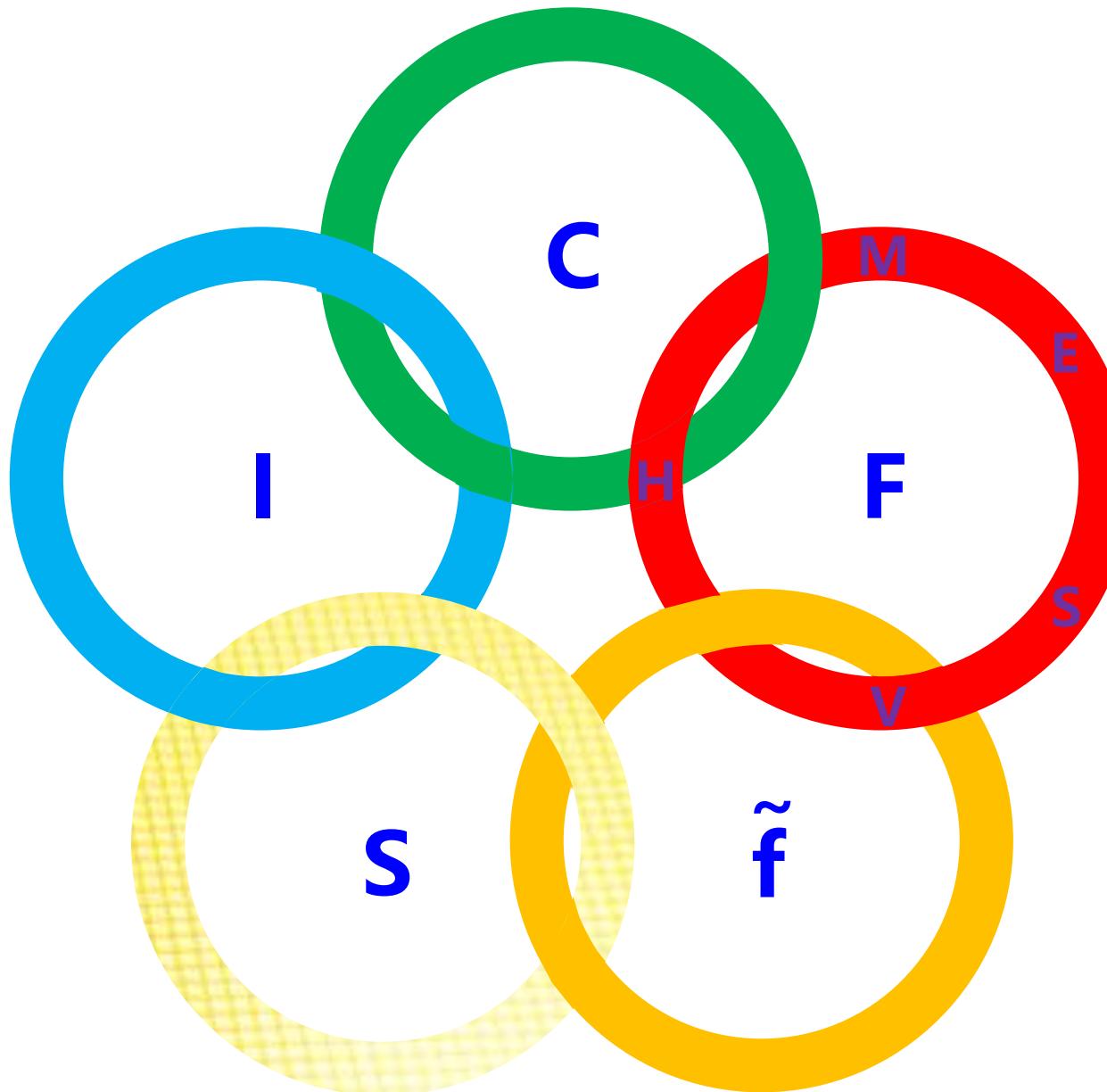
An eco-system

Heterogeneous enterprise

5. DAO & LLM based Design and Simulation for MCIS (M)

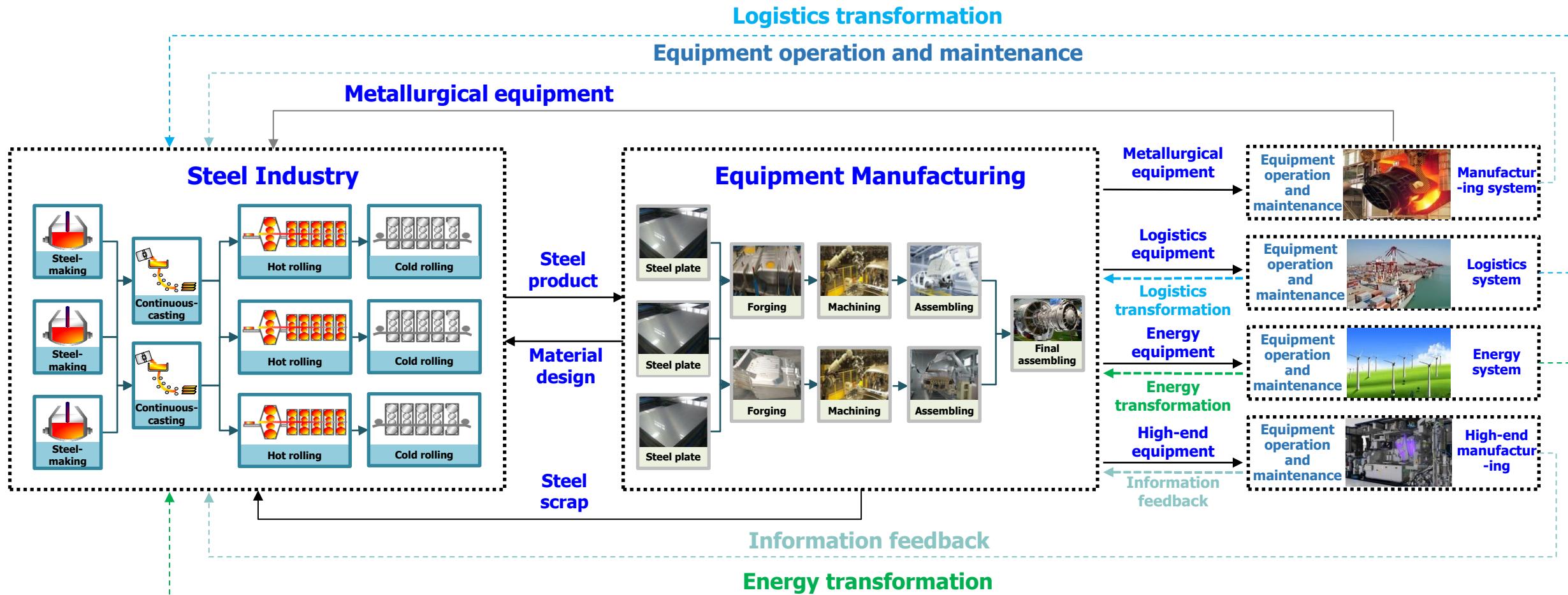


5. DAO & LLM based Design and Simulation for MCIS (M)



5. DAO & LLM based Design and Simulation for MCIS (M)

MCIS from Steel Industry to Equipment Manufacturing (F Ring)



5. DAO & LLM based Design and Simulation for MCIS (M)

Assortment Planning

- Based on market demand and production capacity, decisions are made regarding the varieties and specifications to be produced, production efficiency is enhanced while meeting diverse demands.

Static Planning

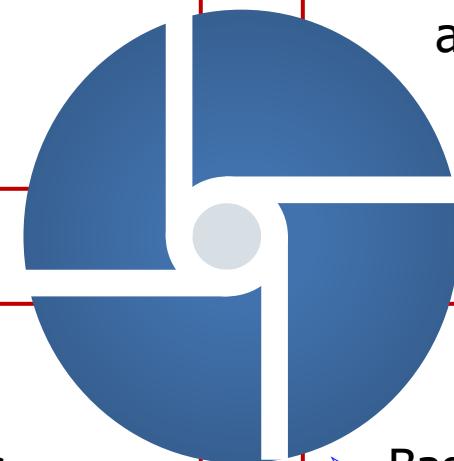
- Based on the customer orders and inventory structure, determine the production volume, inventory, balance production, inventory costs and service levels, and set initial values for the production & inventory systems.

Dynamic Planning

- Taking into account the dynamic changes in supply-demand, by continuously monitoring fluctuations in demand, inventory status, and dynamically adjusting production & inventory strategies, the overall can be enhanced.

Inventory Control

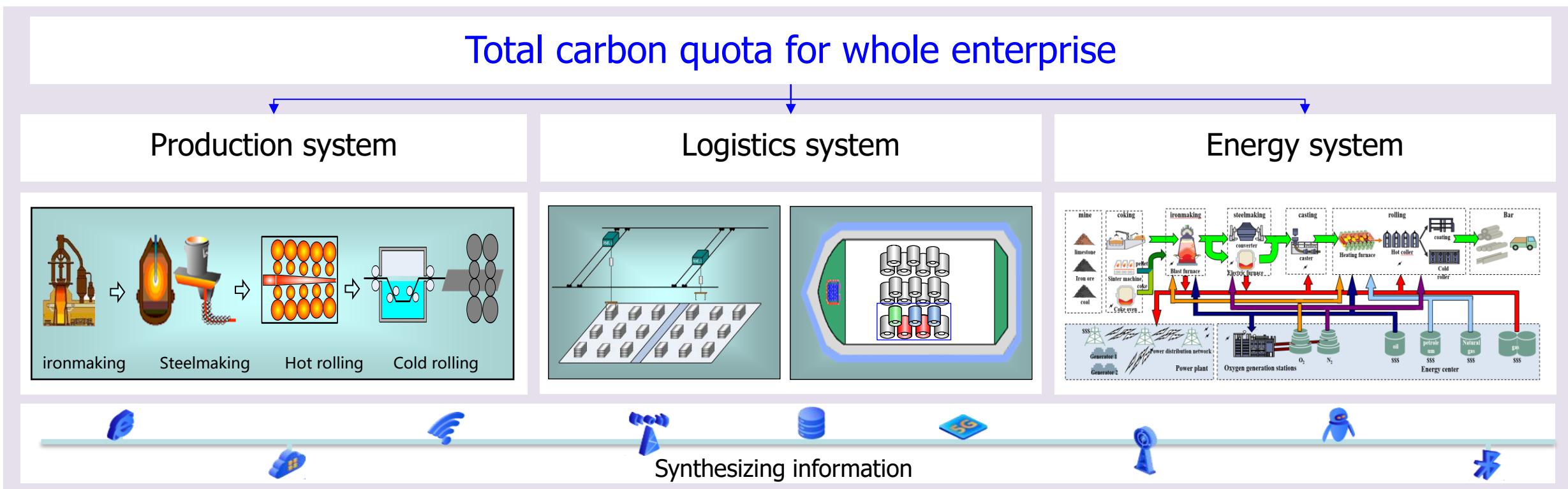
- Based on inventory status, an inventory control model is constructed, and control strategies are designed to ensure that the inventory level remains within a reasonable range, thereby guaranteeing the stability of the system.



5. DAO & LLM based Design and Simulation for MCIS (M)

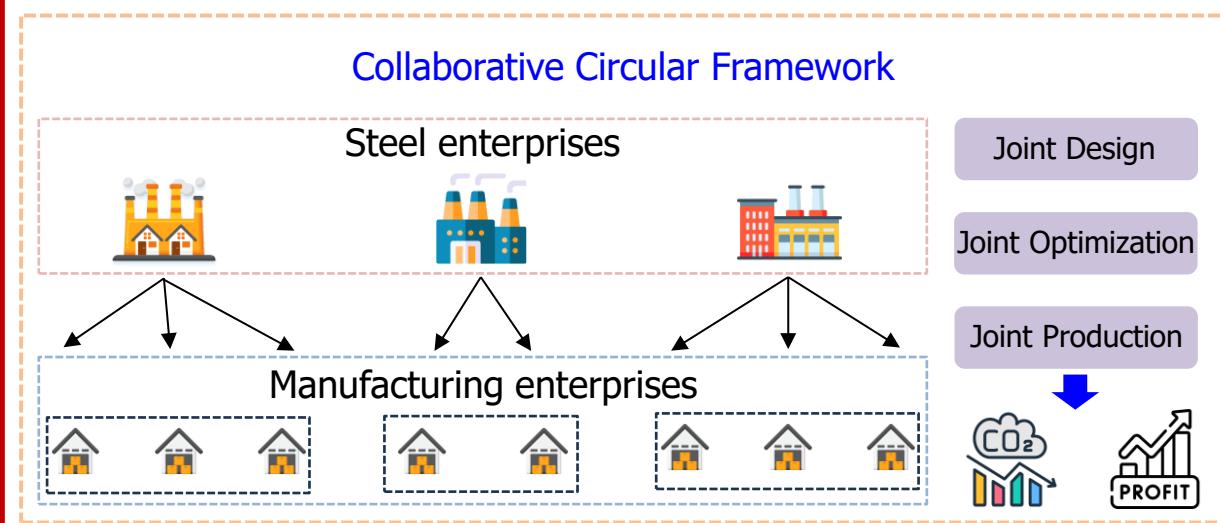
Enterprise-wide carbon quota allocation

- ❖ Allocate the enterprise-wide carbon quota to the production, logistics, and energy systems based on their emission reduction potentials, to achieve balanced emission responsibility and coordinated low-carbon operation across the plant.

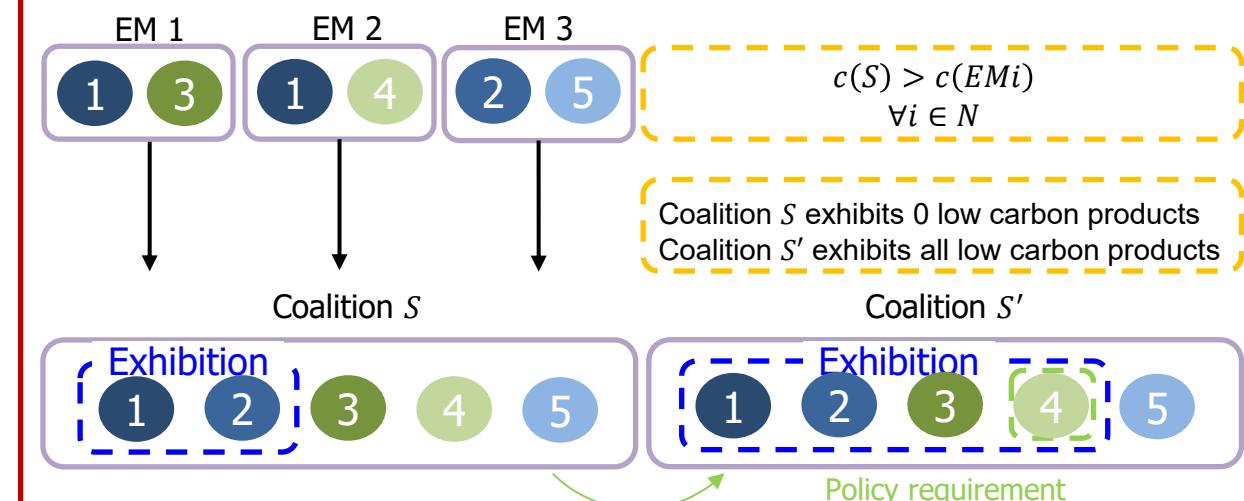


MCIS Carbon Reduction through Cooperation

- For the MCIS, diverse technologies and customized low-carbon steel demands often lead to redundant production and higher emission. A **collaborative circular framework** enables joint production and low-carbon manufacturing.
- A cooperative game-based profit allocation mechanism ensures fair sharing, while a **data-driven core allocation method** optimization algorithm enhance efficiency.



- The production and sales process of equipment manufacturers (EM) can be modeled as an **assortment optimization model**.
- EMs can cooperate to **share the assortment** they can produce. Policies can encourage cooperation among EMs to **avoid duplication of development** and **promote a wider range of low-carbon products**.

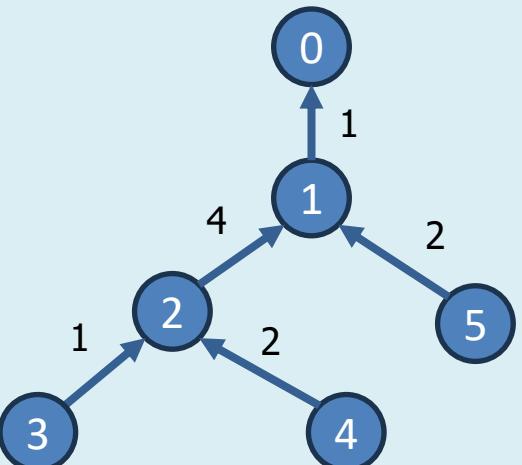


Carbon Reduction Game

- ❖ The carbon emission problem of fossil fuel supply chain is established as a cooperative game model, and the nucleolar mechanism is proposed to assign the carbon emission responsibility of fossil fuel supply chain.

Nucleolus Allocation

$$\begin{cases} z_i = a(T_{ij}) - z(T_{ij}), \\ \text{if } z_j \geq a(T_{ij}) - z(T_{ij}) \\ z_i = z_j, \text{if } z_j \leq a(T_{ij}) - z(T_{ij}) \\ z(N) = c(N). \end{cases}$$



Carbon Reduction Mechanism Design

- ❖ The carbon emission reduction in the supply chain can be realized through the information collection of all pollution sources in the supply chain by enterprises, and total carbon tax can be redistributed among enterprises in the supply chain.

1. Enterprise emission reduction

Each firm i in supply chain makes efforts to reduce emissions f_j of the processes j where $i \in N_j$.

2. Responsibility allocation

Total emissions $\sum_{j \in M} f_j$

Allocation $\{\phi_i\}_{i \in N}$

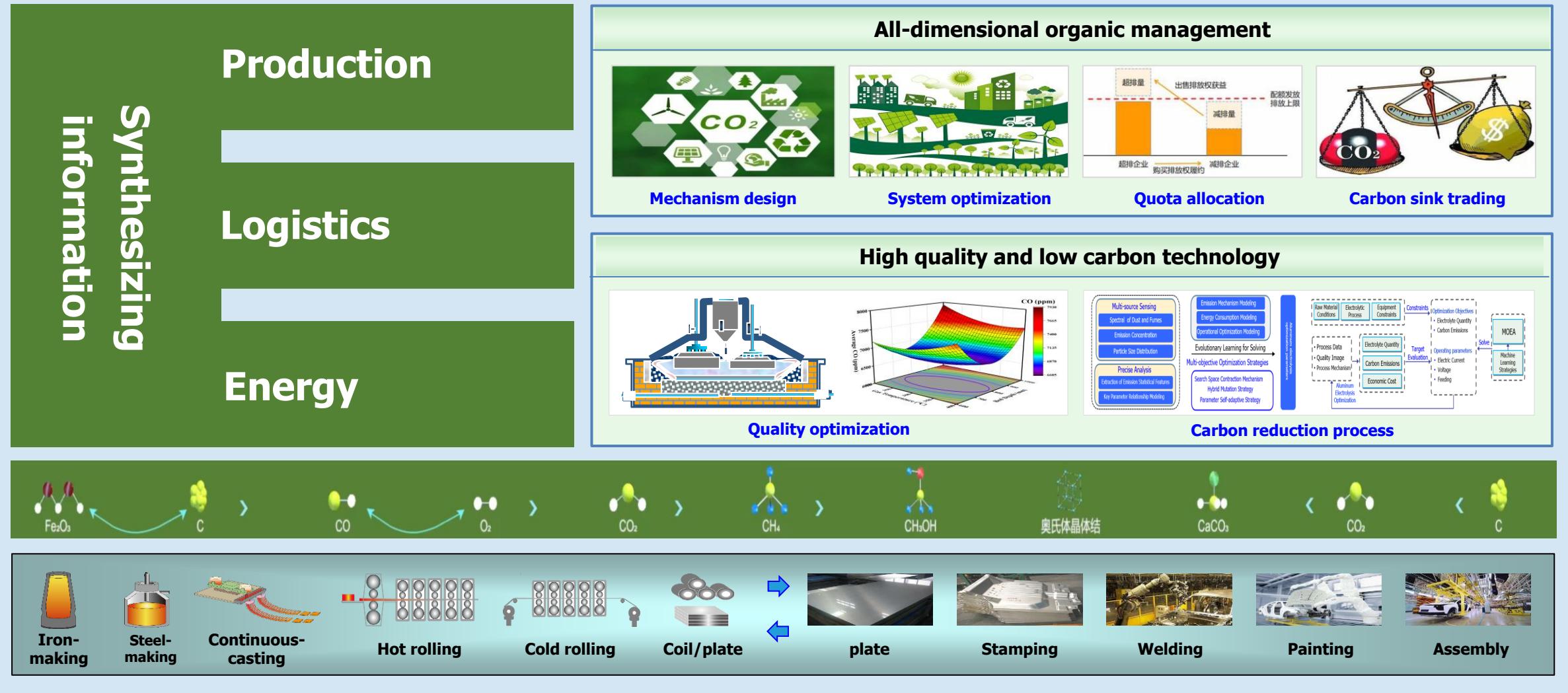
Footprint $\sum_{i \in N} \phi_i = \sum_{j \in M} f_j$

Carbon penalty $p^s \phi_i$

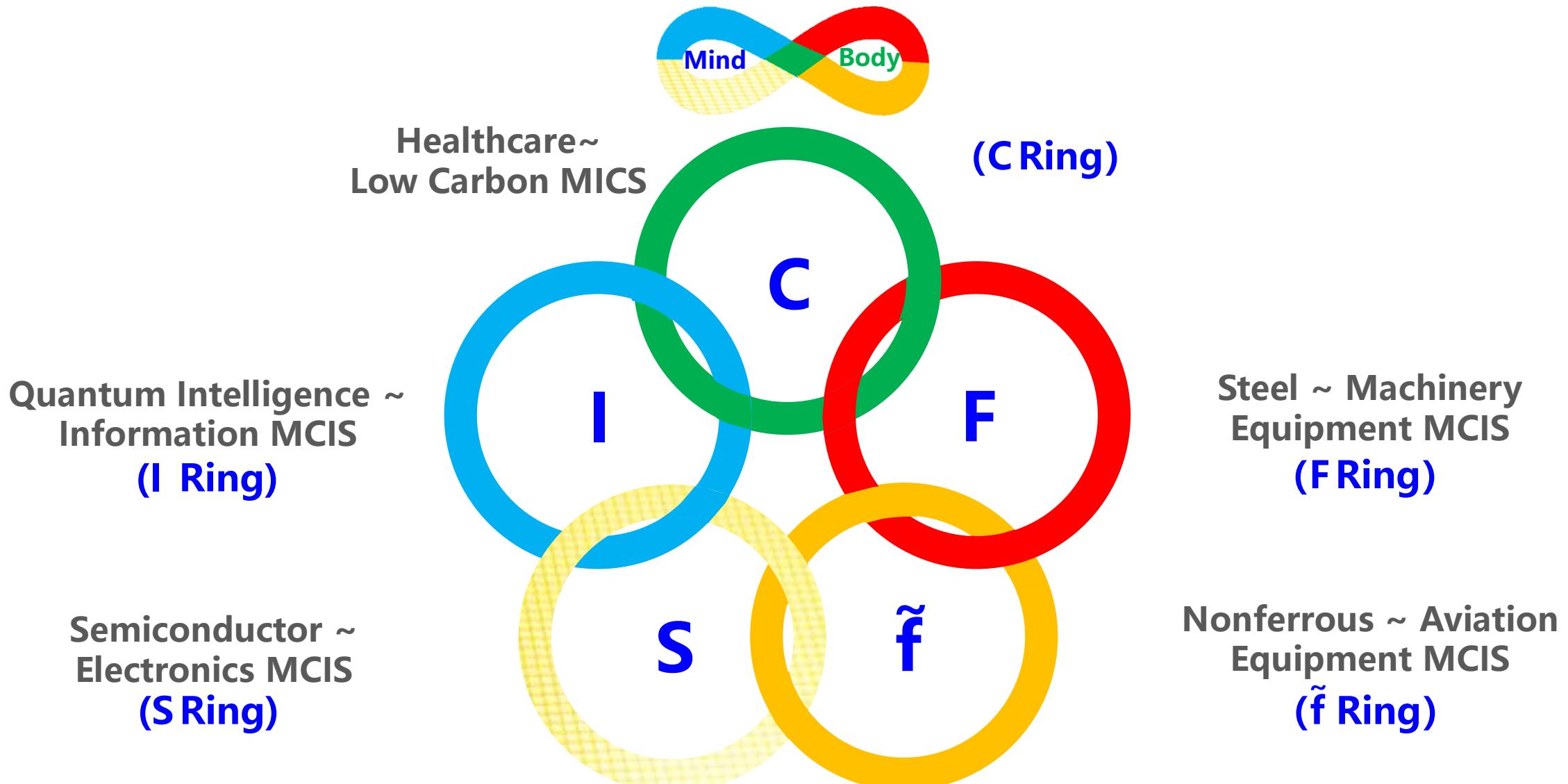
Shapley allocation

5. DAO & LLM based Design and Simulation for MCIS (M)

Mechanism Design and Optimization for Entire Life Cycle Carbon Reduction

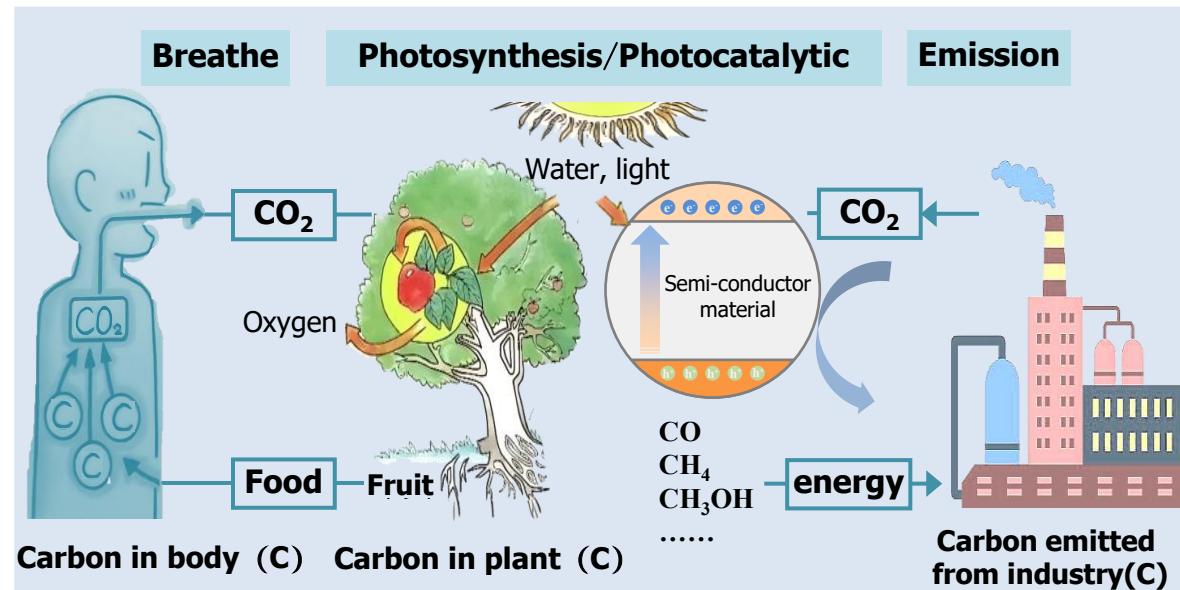
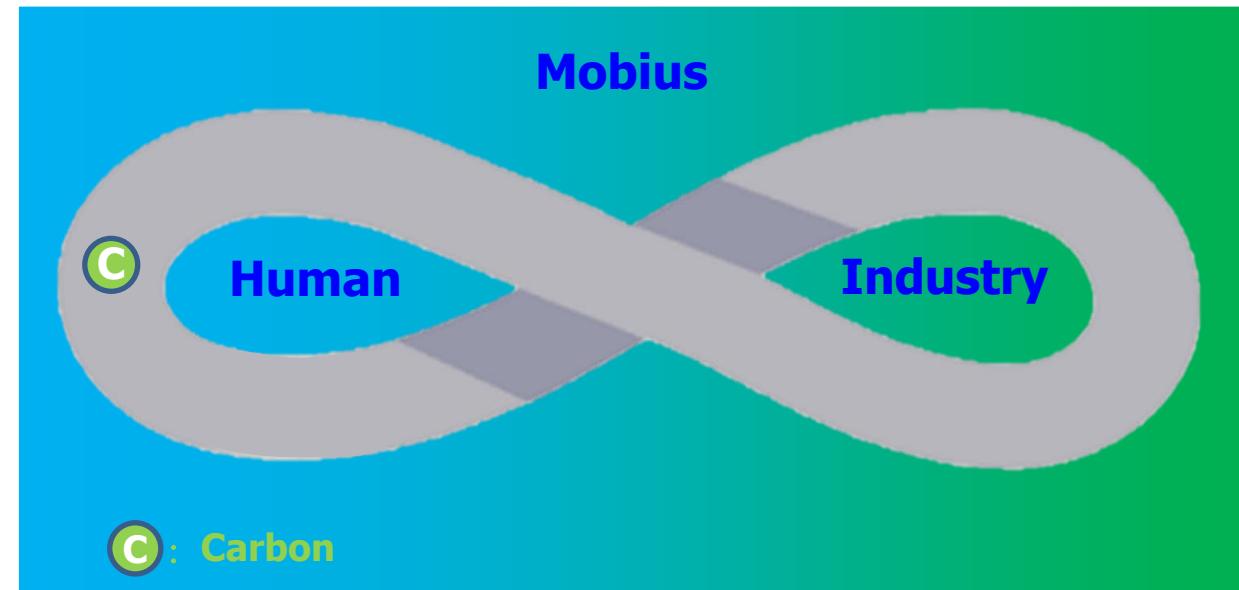


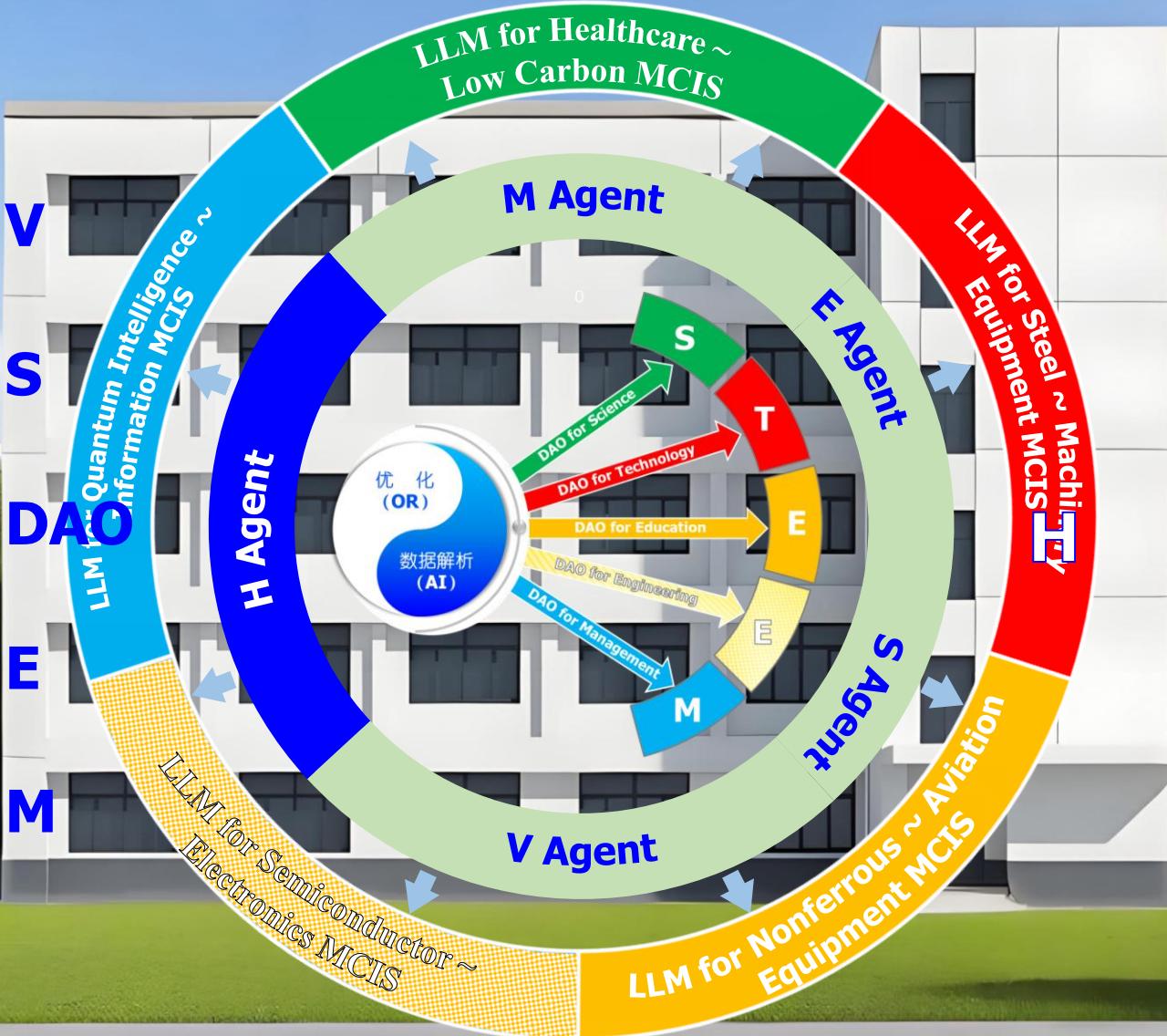
Comprehensive Organic System Intelligence



5. DAO & LLM based Design and Simulation for MCIS (M)

- ❖ Carbon cycle: Carbon elements store, migrate, exchange, and transform between human body and the natural environment, being essential carriers for material and energy flows
 - Carbon cycle in human body: Humans ingest carbohydrates, which are converted into glucose molecules absorbed by cells. Metabolism enables the carbon cycle within the body, providing the material and energy basis for life activities.
 - Carbon cycle in environment: Humans produce CO₂ through respiration, which plants convert into carbohydrates via photosynthesis. These carbohydrates then transfer to humans through the food chain, providing energy and materials.
 - Carbon cycle in industries: Industrial CO₂ can be converted through plant photosynthesis and photocatalytic reactions, transforming CO₂ into renewable hydrocarbon fuels, providing energy for industry.





智欲圆

Contribute to Society

国家级前沿科学中心

National Frontiers Science Center
for Industrial Intelligence and Systems Optimization

STEEM
工业智能与系统优化
DAO

由方入圆、方圆相通

H

M

E

V

行欲方

Rooted in Industry